Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The tropical marine cyanobacterium JHB is a prolific source of secondary metabolites with potential biomedical utility. Previous studies on this strain led to the discovery of several novel compounds such as hectochlorins and jamaicamides. However, bioinformatic analyses of its genome indicate the presence of numerous cryptic biosynthetic gene clusters that have yet to be characterized. To potentially stimulate the production of novel compounds from this strain, it was cocultured with . From this experiment, we observed the increased production of a new compound that we characterize here as hectoramide B. Bioinformatic analysis of the JHB genome enabled the identification of a putative biosynthetic gene cluster responsible for hectoramide B biosynthesis. This work demonstrates that coculture competition experiments can be a valuable method to facilitate the discovery of novel natural products from cyanobacteria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10949194 | PMC |
http://dx.doi.org/10.1021/acschembio.3c00391 | DOI Listing |