98%
921
2 minutes
20
Many individuals with diabetes on multiple daily insulin injections therapy use carbohydrate ratios (CRs) and correction factors (CFs) to determine mealtime and correction insulin boluses. The CRs and CFs vary over time due to physiological changes in individuals' response to insulin. Errors in insulin dosing can lead to life-threatening abnormal glucose levels, increasing the risk of retinopathy, neuropathy, and nephropathy. Here, we present a novel learning algorithm that uses Q-learning to track optimal CRs and uses nearest-neighbors based Q-learning to track optimal CFs. The learning algorithm was compared with the run-to-run algorithm A and the run-to-run algorithm B, both proposed in the literature, over an 8-week period using a validated simulator with a realistic scenario created with suboptimal CRs and CFs values, carbohydrate counting errors, and random meals sizes at random ingestion times. From Week 1 to Week 8, the learning algorithm increased the percentage of time spent in target glucose range (4.0 to 10.0 mmol/L) from 51 % to 64 % compared to 61 % and 58 % with the run-to-run algorithm A and the run-to-run algorithm B, respectively. The learning algorithm decreased the percentage of time spent below 4.0 mmol/L from 9 % to 1.9 % compared to 3.4 % and 2.3 % with the run-to-run algorithm A and the run-to-run algorithm B, respectively. The algorithm was also assessed by comparing its recommendations with (i) the endocrinologist's recommendations on two type 1 diabetes individuals over a 16-week period and (ii) real-world individuals' therapy settings changes of 23 individuals (19 type 2 and 4 type 1) over an 8-week period using the commercial Bigfoot Unity Diabetes Management System. The full agreements (i) were 89 % and 76 % for CRs and CFs for the type 1 diabetes individuals and (ii) was 62 % for mealtime doses for the individuals on the commercial Bigfoot system. Therefore, the proposed algorithm has the potential to improve glucose control in individuals with type 1 and type 2 diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.artmed.2023.102749 | DOI Listing |
BMC Med Inform Decis Mak
January 2025
Department of Information Engineering (DEI), University of Padova, Via G. Gradenigo 6/B, Padua, 35131, Italy.
Background: Post bariatric hypoglycaemic (PBH) is a late complication of weight loss surgery, characterised by critically low blood glucose levels following meal-induced glycaemic excursions. The disabling consequences of PBH underline the need for the development of a decision support system (DSS) that can warn individuals about upcoming PBH events, thus enabling preventive actions to avoid impending episodes. In view of this, we developed various algorithms based on linear and deep learning models to forecast PBH episodes in the short-term.
View Article and Find Full Text PDFJ Chem Theory Comput
December 2024
Department of Chemistry and Biochemistry and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States.
The weighted ensemble (WE) method stands out as a widely used segment-based sampling technique renowned for its rigorous treatment of kinetics. The WE framework typically involves initially mapping the configuration space onto a low-dimensional collective variable (CV) space and then partitioning it into bins. The efficacy of WE simulations heavily depends on the selection of CVs and binning schemes.
View Article and Find Full Text PDFForensic Sci Int Genet
September 2024
National Institute of Standards and Technology, Applied Genetics Group, 100 Bureau Drive, Gaithersburg, MD 20899, USA.
Several fully continuous probabilistic genotyping software (PGS) use Markov chain Monte Carlo algorithms (MCMC) to assign weights to different proposed genotype combinations at a locus. Replicate interpretations of the same profile in these software are expected not to produce identical weights and likelihood ratio (LR) values due to the Monte Carlo aspect. This paper reports a detailed precision study under reproducibility conditions conducted as a collaborative exercise across the National Institute of Standards and Technology (NIST), Federal Bureau of Investigation (FBI), and Institute of Environmental Science and Research (ESR).
View Article and Find Full Text PDFArtif Intell Med
February 2024
Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Division of Endocrinology, Department of Medicine, McGill University, Montreal, Quebec, Canada; The Research Institute of McGill University Health Centre, Montreal, Quebec, Canada; Division of Experimental Medicine, D
Many individuals with diabetes on multiple daily insulin injections therapy use carbohydrate ratios (CRs) and correction factors (CFs) to determine mealtime and correction insulin boluses. The CRs and CFs vary over time due to physiological changes in individuals' response to insulin. Errors in insulin dosing can lead to life-threatening abnormal glucose levels, increasing the risk of retinopathy, neuropathy, and nephropathy.
View Article and Find Full Text PDFChem Sci
October 2022
Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
Single-molecule microscopy is advantageous in characterizing heterogeneous dynamics at the molecular level. However, there are several challenges that currently hinder the wide application of single molecule imaging in bio-chemical studies, including how to perform single-molecule measurements efficiently with minimal run-to-run variations, how to analyze weak single-molecule signals efficiently and accurately without the influence of human bias, and how to extract complete information about dynamics of interest from single-molecule data. As a new class of computer algorithms that simulate the human brain to extract data features, deep learning networks excel in task parallelism and model generalization, and are well-suited for handling nonlinear functions and extracting weak features, which provide a promising approach for single-molecule experiment automation and data processing.
View Article and Find Full Text PDF