98%
921
2 minutes
20
The comprehensive control of hydroxyapatite (HAp), involving morphological and structural variations, particle sizes, and defect formations, has garnered considerable attention for its versatile functionalities, rendering it applicable in diverse contexts. This work examined the shape, structure and optical characteristics, and defect formation in hydroxyapatite (HAp) extracted from Nile tilapia () scales with various pre-treatments through experiments and density functional theory (DFT) calculations. Utilizing scanning electron microscopy, our findings revealed that dried fish scales (FS-D) exhibited a layered pattern of collagen fibers, while boiled fish scales (FS-B) had smoother surfaces and significantly reduced collagen content. After calcination, the FS-D sample produced nanorods with an average length of 150 ± 44 nm, whereas the FS-B samples yielded agglomerated spherical particles whose size increased with the rising calcining temperature. In-depth analysis through X-ray diffraction and Fourier-transform infrared spectroscopy confirmed the presence of biphasic calcium phosphates in the FS-B samples, while the FS-D sample presented a pure HAp phase. The boiled fish scale calcined at 800 °C (FS-B800) exhibited an optical band gap () of 5.50 eV, whereas the dried fish scale calcined at 800 °C (FS-D800) showed two values of 2.87 and 3.97 eV, as determined by UV-visible spectroscopy. DFT calculations revealed that the band gap of 3.97 eV correlated with OH vacancies, while that of 2.87 eV indicated Mn-substituted HAp, explaining the blue powder. The value for the white powder resembled pure HAp, S and Cl substituted OH vacancies, and various cations substituting Ca sites of HAp. Different pre-treatment procedures influence the characteristics of HAp, offering opportunities for applications in bone replacement and scaffolds for bone tissue engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10839550 | PMC |
http://dx.doi.org/10.1039/d3ra07556g | DOI Listing |
J Biomed Mater Res B Appl Biomater
September 2025
Abyss Ingredients, Caudan, France.
The development of functional materials for osteoporosis is essential for effective bone remodeling. In this context, the extraction of biocompatible implantable biomaterials from bio-waste emerges as a valuable strategy, addressing both environmental challenges and promoting human health. The objective of this work was to evaluate the physicochemical properties of the added-value by-product biomaterial (SS-90), extracted from sardine scales (Sardina Pilchardus) and combined with chitosan (SS-90-CH).
View Article and Find Full Text PDFRegen Med
September 2025
Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis School of Biological Sciences (SSBS), Symbiosis International, Deemed University, Lavale, Pune, India.
Aims: This study aimed to enhance the osteoinductive potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) by integrating them into a nano-hydroxyapatite (nHAp)-enriched hydrogel scaffold for bone regeneration applications.
Materials & Methods: EVs were isolated from naïve and osteogenically primed MSCs and characterized for morphology, cargo content, and cytocompatibility. Their uptake and osteoinductive activity were assessed using MC3T3 cells within a 3D interpenetrating network (IPN) hydrogel.
Bone
September 2025
Department of Mechanical Engineering, Texas A&M University, 3123 TAMU, College Station, TX, 77843, United States of America; School of Engineering Medicine, Texas A&M University, 1020 Holcombe Blvd, Houston, TX 77030, United States of America. Electronic address:
Breast, prostate and lung cancer cells frequently metastasize to bone, leading to disruption of the bone microstructure. This study utilized mechanical testing with micro-CT imaging, digital volume correlation (DVC), and atomic force microscopy (AFM) nanomechanical testing to examine the mechanical property variations in mouse long bones (tibia) with metastatic lung cancer cell involvement, spanning from the whole-bone scale to the microstructural level. In addition, we also investigated how metastatic invasion alters the morphology of hydroxyapatite nanocrystals in bone at the nanometer scale.
View Article and Find Full Text PDFActa Biomater
September 2025
Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI 48824, USA. Electronic address:
Despite advancements in bonding techniques, the resin-dentin interface remains the weakest point in dental restorations, susceptible to collagen degradation and methacrylate hydrolysis. One strategy to enhance the resin-dentin interface is to incorporate hydrogen-bonding-rich functional groups into dental adhesive resins, such as 2-ureido-4[1H]-pyrimidinone (UPy). These hydrogen bonds may bridge the adhesive resin and dentin substrate, which contains collagen and hydroxyapatite, as well as form non-covalent crosslinks within the resin.
View Article and Find Full Text PDFACS Appl Bio Mater
September 2025
W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States.
This study investigates a strategy to improve the osteogenic capacity of Ti6Al4V implants by incorporating allicin onto hydroxyapatite-coated implant surfaces. Allicin, a bioactive compound derived from garlic, is recognized for its ability to modulate bone remodeling processes. Hydroxyapatite (HA) coatings were applied by using plasma spraying, and allicin was loaded and its release was characterized using UV-vis spectroscopy.
View Article and Find Full Text PDF