98%
921
2 minutes
20
Replacement of sp-hybridized carbon in polycyclic aromatic hydrocarbons (PAHs) by boron affords electron-deficient π-scaffolds due to the vacant p-orbital of three-coordinate boron with the potential for pronounced electronic interactions with electron-rich metal surfaces. Using a diboraperylene diborinic acid derivative as precursor and a controlled on-surface non-covalent synthesis approach, we report on a self-assembled chiral supramolecular kagome network on an Ag(111) surface stabilized by intermolecular hydrogen-bonding interactions at low temperature. Scanning tunneling microscopy (STM) and spectroscopy (STS) reveal a flat band at ca. 0.33 eV above the Fermi level which is localized at the molecule center, in good agreement with tight-binding model calculations of flat bands characteristic for kagome lattices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202400313 | DOI Listing |
Angew Chem Int Ed Engl
April 2024
Experimentelle Physik 2, Physikalisches Institut, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.
Replacement of sp-hybridized carbon in polycyclic aromatic hydrocarbons (PAHs) by boron affords electron-deficient π-scaffolds due to the vacant p-orbital of three-coordinate boron with the potential for pronounced electronic interactions with electron-rich metal surfaces. Using a diboraperylene diborinic acid derivative as precursor and a controlled on-surface non-covalent synthesis approach, we report on a self-assembled chiral supramolecular kagome network on an Ag(111) surface stabilized by intermolecular hydrogen-bonding interactions at low temperature. Scanning tunneling microscopy (STM) and spectroscopy (STS) reveal a flat band at ca.
View Article and Find Full Text PDF