98%
921
2 minutes
20
Quasi-2D perovskites show great potential as photovoltaic devices with superior stability, but the power conversion efficiency (PCE) is limited by poor carrier transport. Here, it is simultaneously affected the hole transport layer (HTL) and the perovskite layer by incorporating pyridine-based materials into poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) to address the key problem above in 2D perovskites. With this approach, the enhanced optoelectronic performance of the novel PEDOT:PSS is due to electron transfer between the additives and PEDOT or PSS, as well as a dissociation between PEDOT and PSS based on experimental and theoretical studies, which facilitates the charge extraction and transfer. Concurrently, in-situ X-ray scattering studies reveal that the introduction of pyridine-based molecules alters the transformation process of the perovskite intermediate phase, which leads to a preferred orientation and ordered distribution caused by the Pb─N chemical bridge, achieving efficient charge transport. As a result, the pyridine-treated devices achieve an increased short-circuit current density (J) and PCE of over 17%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202311569 | DOI Listing |
Top Magn Reson Imaging
October 2025
BIOSPACE LAB, Nesles-la-Vallée, France.
Aims: Cardiac tumors are aggressive and asymptomatic in early stages, causing late diagnosis and locoregional metastasis. Currently, the standard of care uses gadolinium-based contrast agents for MRI, and the associated hypersensitivity reactions are a significant concern, such as gadolinium deposition disease. In addition, the proximity of cardiac lesions closer to vital structures complicates surgical interventions.
View Article and Find Full Text PDFOrg Lett
September 2025
School of Chemical Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India.
Selective reduction of heteroaromatic compounds to partially hydrogenated, dearomatized molecules is a tantalizing task. A well-defined, air stable, and pyridine-based Cu(II) NNN pincer complex is developed, which catalyzes selective 1,2-reduction of quinolines. The unstable 1,2-hydrogenated quinolines are transformed into the corresponding amides and isolated in good yields.
View Article and Find Full Text PDFJACS Au
July 2025
Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
Natural products (NPs) remain a vital source of bioactive molecules, with pyridine-containing compounds displaying diverse biological activities. This study presents the discovery of oxazolismycin, a novel pyridine-containing NP characterized by an oxazole-pyridine scaffold. Genome mining of ATCC 14511 revealed a biosynthetic gene cluster encoding an NRPS-PKS assembly line homologous to those responsible for caerulomycin and collismycin biosynthesis.
View Article and Find Full Text PDFMolecules
June 2025
Laboratory for the Computational Design and Synthesis of Functional Materials, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia.
The imidazo[4,5-]pyridine scaffold, a versatile heterocyclic system, is renowned for its biological and chemical significance, yet its coordination chemistry with biologically relevant metal dications remains underexplored. This study investigates the proton and metal dication affinities of twelve tetracyclic organic molecules based on the imidazo[4,5-]pyridine core, focusing on their interactions with Ca(II), Mg(II), Zn(II), and Cu(II). Employing a dual approach of electrospray ionization mass spectrometry (ESI-MS) and density functional theory (DFT) calculations, we characterized the formation, stability, and structural features of metal-ligand complexes.
View Article and Find Full Text PDFPharmaceuticals (Basel)
May 2025
Department of Material Science, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
: Colony stimulating factor 1 receptor kinase (CSF1R) is a well-validated molecular target in drug discovery for various reasons. Based on the structure of an early lead molecule identified in our lab and the marketed drug Pexidartinib (PLX3397), we merged fragments of Pexidartinib with our pyrrolo[2,3-]pyrimidine nucleus, and the idea was supported by initial molecular docking studies. Thus, several new compounds were synthesized with Pexidartinib fragments on C4, C5, and C6 on the pyrrolopyrimidine scaffold using molecular hybridization.
View Article and Find Full Text PDF