Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Target enrichment sequencing techniques are gaining widespread use in the field of genomics, prized for their economic efficiency and swift processing times. However, their success depends on the performance of probes and the evenness of sequencing depth among each probe. To accurately predict probe coverage depth, a model called Deqformer is proposed in this study. Deqformer utilizes the oligonucleotides sequence of each probe, drawing inspiration from Watson-Crick base pairing and incorporating two BERT encoders to capture the underlying information from the forward and reverse probe strands, respectively. The encoded data are combined with a feed-forward network to make precise predictions of sequencing depth. The performance of Deqformer is evaluated on four different datasets: SNP panel with 38 200 probes, lncRNA panel with 2000 probes, synthetic panel with 5899 probes and HD-Marker panel for Yesso scallop with 11 000 probes. The SNP and synthetic panels achieve impressive factor 3 of accuracy (F3acc) of 96.24% and 99.66% in 5-fold cross-validation. F3acc rates of over 87.33% and 72.56% are obtained when training on the SNP panel and evaluating performance on the lncRNA and HD-Marker datasets, respectively. Our analysis reveals that Deqformer effectively captures hybridization patterns, making it robust for accurate predictions in various scenarios. Deqformer leads to a novel perspective for probe design pipeline, aiming to enhance efficiency and effectiveness in probe design tasks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10835675 | PMC |
http://dx.doi.org/10.1093/bib/bbae007 | DOI Listing |