98%
921
2 minutes
20
Cadmium (Cd) stress causes serious damage to plants, inducing various physiological and biochemical disruptions that lead to reduced plant biomass and compromised growth. The study investigated the combined effects of silicon (Si) and arbuscular mycorrhizal fungi (AMF) on mitigating Cd stress in plants, revealing promising results in enhancing plant tolerance to Cd toxicity. Under Cd stress, plant biomass was significantly reduced (-33% and -30% shoot and root dry weights) as compared to control. However, Si and AMF application ameliorated this effect, leading to increased shoot and root dry weights (+47% and +39%). Furthermore, Si and AMF demonstrated their potential in reducing the relative Cd content (-43% and -36% in shoot and root) in plants and positively influencing plant colonization (+648%), providing eco-friendly and sustainable strategies to combat Cd toxicity in contaminated soils. Additionally, the combined treatment in the Cd-stressed conditions resulted in notable increases in saccharide compounds and hormone levels in both leaf and root tissues, further enhancing the plant's resilience to Cd-induced stress. Si and AMF also played a vital role in positively regulating key lignin biosynthesis genes and altering lignin-related metabolites, shedding light on their potential to fortify plants against Cd stress. These findings underscore the significance of Si and AMF as promising tools in addressing Cd toxicity and enhancing plant performance in Cd-contaminated environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.140507 | DOI Listing |
Elevated acidity from natural and anthropogenic sources can be a significant stressor for plants, affecting essential processes such as nutrient uptake and growth. While low pH (< 4) is generally considered stressful for plants, differential impacts of distinct acid types-organic versus inorganic, strong versus weak-on plant growth and development remain unclear. To address this knowledge gap, we evaluated the responses of two Brassicaceae species to organic (acetic) and inorganic (hydrochloric, sulfuric) acids at three pH levels (pH 2.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India.
The plant (Asteraceae) is gaining popularity as a zero-calorie natural sugar substitute. This paper investigates the regeneration of from callus, emphasizing steviol glycoside (SGs) production and the evaluation of genetic similarity. The highest rate of callus induction (89.
View Article and Find Full Text PDFPhysiol Plant
September 2025
Centre of Molecular and Environmental Biology (CBMA), Department of Biology, School of Sciences of the University of Minho, Braga, Portugal.
The Mediterranean Basin, a hotspot for tomato production, is one of the most vulnerable areas to climate change, where rising temperatures and increasing soil and water salinization represent major threats to agricultural sustainability. Thus, to understand the molecular mechanisms behind plant responses to this stress combination, an RNA-Seq analysis was conducted on roots and shoots of tomato plants exposed to salt (100 mM NaCl) and/or heat (42°C, 4 h each day) stress for 21 days. The analysis identified over 8000 differentially expressed genes (DEGs) under combined stress conditions, with 1716 DEGs in roots and 2665 in shoots being exclusively modulated in response to this specific stress condition.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-, Rennes 35000, France.
The increasing presence of nanoplastics (NPs) in terrestrial environments raises concerns about their bioavailability and potential impacts on crops. This study investigates the uptake and translocation of environmentally relevant polystyrene nanoplastics (eNPs-PS) in Hordeum vulgare L. via soil.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Department of Biology & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal.
Maize (Zea mays L.) is one of the world's most widely cultivated and economically important cereal crop, serving as a staple food and feed source in over 170 countries. However, its global productivity is threatened by late wilt disease (LWD), a disease caused by Magnaporthiopsis maydis, that spreads through soil and seeds and can cause severe yield losses.
View Article and Find Full Text PDF