Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Ischaemia-reperfusion (I/R) injury is a severe post-operative complication that triggers an inflammatory response and causes severe damage. Hydrogen gas has anti-oxidant and anti-apoptotic properties and has been shown to be safe in humans. The study aimed to investigate whether hydrogen gas protects against skeletal muscle I/R injury.

Methods: Experimental basic research using mice. A total of 160 eight to 10 week old albino laboratory bred strain of house mice (25.8 ± 0.68 g) were used in this study. The mice were cable tied to the hindlimb under anaesthesia and then placed in an anaesthesia box filled with air and 2% isoflurane (control group); 80 mice were additionally subjected to 1.3% hydrogen gas in this mix (hydrogen group). After two hours, the cable ties were removed to initiate reperfusion, and hydrogen inhalation lasted for six hours in the hydrogen group. After six hours, the mice were taken out of the box and kept in cages under standard conditions until time for observation at 16 different time points after reperfusion: zero, two, four, six, eight, and 10 hours and one, two, three, four, five, six, seven, 14, 21, and 28 days. Five mice were sacrificed using excess anaesthesia at each time point, and the bilateral hindlimb tissues were harvested. The inflammatory effects of the I/R injury were assessed by evaluating serum interleukin-6 concentrations using enzyme linked immunosorbent assay, as well as histological and immunohistochemical analyses. Untreated mice with I/R injury were used as controls.

Results: Hydrogen gas showed protective effects associated with a reduction in inflammatory cell infiltration (neutrophils, macrophages, and lymphocytes), a reduced area of damaged muscle, maintenance of normal muscle cells, and replacement of damaged muscle cells with neoplastic myocytes.

Conclusion: Inhalation of hydrogen gas had a protective effect against hindlimb I/R injury in mice, in part by reducing inflammatory cell infiltration and in part by preserving normal muscle cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejvs.2024.01.081DOI Listing

Publication Analysis

Top Keywords

hydrogen gas
24
i/r injury
16
muscle cells
12
hydrogen
9
protective effects
8
mice
8
hydrogen group
8
group hours
8
gas protective
8
inflammatory cell
8

Similar Publications

The microwave spectrum of the complex formed between 1-fluoronaphthalene and HO has been recorded using a chirped pulse Fourier transform microwave spectrometer within the frequency range of 2.0 to 8.0 GHz, with neon as the carrier gas.

View Article and Find Full Text PDF

Construction of Zeolite Framework-Anchored Rh-(O-Zn) Sites for Ethylene Hydroformylation.

J Am Chem Soc

September 2025

National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Zeolite-confined Rh-based catalysts have emerged as promising heterogeneous candidates for olefin hydroformylation. However, they face challenges of reactant- and product-induced Rh leaching and aggregation. Herein, zeolite framework-anchored Rh-(O-Zn) sites were designed and are shown to have remarkable activity and stability for gas-phase ethylene hydroformylation.

View Article and Find Full Text PDF

The adsorption of amino acids on coinage metal surfaces is of interest for a range of biological applications. Central to advancing these applications is understanding the structure of the adsorbed molecules and the state they are present in. Cysteine, the focus of this work, has been studied extensively, both experimentally and theoretically.

View Article and Find Full Text PDF

The aim of this experiment was to determine the effects of walnut (Juglans regia L.) green husk (WGH) supplemented to ration on rumen fermentation by in vitro gas production technique. WGH was supplemented at different ratios (0%, 2%, 4%, 6%, 8%, and 10%) to the total mixture ration formed from 80%/20% roughage/concentrate feed.

View Article and Find Full Text PDF

Adjusting interlayer interactions and proton-conduction pathways of 2D covalent organic frameworks through the rotaxane structures.

Natl Sci Rev

September 2025

Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China.

Covalent organic frameworks (COFs) have great potential as versatile platforms for proton conduction. However, the commonly applied 2D COFs that are easy to design and synthesize have only 1D channels for proton conduction, limiting the formation of continuous hydrogen bonds due to the anisotropy between their crystalline grains. Herein, we report a strategy to construct 3D channels in 2D COFs by using rotaxane structures and eliminate the strong interlayer π-π interactions, facilitating the formation of smooth 3D proton-transfer pathways during guest doping.

View Article and Find Full Text PDF