A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Phase Diagrams of Alloys and Their Hydrides via On-Lattice Graph Neural Networks and Limited Training Data. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Efficient prediction of sampling-intensive thermodynamic properties is needed to evaluate material performance and permit high-throughput materials modeling for a diverse array of technology applications. To alleviate the prohibitive computational expense of high-throughput configurational sampling with density functional theory (DFT), surrogate modeling strategies like cluster expansion are many orders of magnitude more efficient but can be difficult to construct in systems with high compositional complexity. We therefore employ minimal-complexity graph neural network models that accurately predict and can even extrapolate to out-of-train distribution formation energies of DFT-relaxed structures from an ideal (unrelaxed) crystallographic representation. This enables the large-scale sampling necessary for various thermodynamic property predictions that may otherwise be intractable and can be achieved with small training data sets. Two exemplars, optimizing the thermodynamic stability of low-density high-entropy alloys and modulating the plateau pressure of hydrogen in metal alloys, demonstrate the power of this approach, which can be extended to a variety of materials discovery and modeling problems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.3c03369DOI Listing

Publication Analysis

Top Keywords

graph neural
8
training data
8
phase diagrams
4
diagrams alloys
4
alloys hydrides
4
hydrides on-lattice
4
on-lattice graph
4
neural networks
4
networks limited
4
limited training
4

Similar Publications