Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We assessed whether wild geladas, highly specialized terrestrial grass eaters, are lateralized for bimanual grass-plucking behavior. According to the literature, we expected that complex motor movements in grass feeding would favor the emergence of a population-level hand bias in these primates. In addition, we described geladas' manual behavior based on systematic observations of several individuals. Our study group included 28 individuals belonging to a population of free-ranging geladas frequenting the Kundi plateau, Ethiopia. We filmed monkeys while feeding on grass, and hand preference and performance were coded. Geladas performed more plucking movements per second with their left hand (LH) compared to the right one and preferred their LH both to start and finish collection bouts. Also, the rhythmic movements of each hand had a significant tendency toward isochrony. Finally, geladas used forceful pad-to-pad precision grips, in-hand movements, and compound grips to pluck and collect grass blades, considered the most advanced manual skills in primate species. The LH's leading role suggests an advantage of the right hemisphere in regulating geladas' bimanual grass-feeding behavior. The tactile input from the hands and/or rhythmic hand movements might contribute to explaining this pattern of laterality. Our findings highlighted the importance of adopting multiple laterality measures to investigate manual laterality. Moreover, the need to speed up the execution time of manual foraging might be a further important factor in studying the evolution of manual laterality and dexterity in primates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajp.23602 | DOI Listing |