A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Contrasting effects of a traditional material of polyaluminum chloride and an emerging material of lanthanum carbonate capping on sediment internal phosphorus immobilization. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polyaluminum chloride (PAC) is a traditional material used for immobilizing sediment internal phosphorus (P) in field-scale experiment. Lanthanum carbonate (LC) is an emerging material which have been used in immobilizing sediment internal P in laboratory. To promote LC in practice, the premise is that it does have advantages over traditional material when used. Herein, a 90-day incubation experiment was conducted comparing the effectiveness and mechanism of LC and PAC capping in controlling sediment internal P. The results of isotherm experiment and XPS analysis indicated that the adsorption mechanism of P onto LC and PAC involved ligand exchange and formation of inner-sphere La/Al-O-P complexes. The incubation experiment revealed that PAC capping was more effective in reducing pore water soluble reactive phosphorus (SRP), exhibiting a reduction of up to 81.32 % but showed a decrease trend. However, LC capping resulted in a reduction of pore water SRP up to 52.84 % and maintained stability. On average, LC and PAC capping reduced SRP flux by 0.27 and 0.32 μg·md, respectively relative to the control sediment. Moreover, LC capping facilitated the formation of Fe(III)/Mn(IV) oxyhydroxides, leading to an increased P adsorption, whereas PAC capping facilitated the reduction of Fe(III)/Mn(IV) minerals with P release. Additionally, LC capping resulted in the reduction of a higher ratio of mobile P/TP to stable P forms than PAC capping, as compared to the control. In contrast to PAC capping which converted mobile P to stable NaOH-rP, LC capping transformed mobile P and NaOH-rP into more stable HCl-P and ResP. Both LC and PAC capping caused variations in sediment bacterial communities. Nevertheless, PAC capping heightened the risk of Co, Ni, Cu, and Pb releases in sediment compared to LC capping. In summary, this study suggested that LC capping surpassed PAC capping in immobilizing sediment internal P.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.170538DOI Listing

Publication Analysis

Top Keywords

pac capping
36
sediment internal
20
capping
16
traditional material
12
immobilizing sediment
12
pac
11
polyaluminum chloride
8
emerging material
8
lanthanum carbonate
8
sediment
8

Similar Publications