Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Self-assembled lipid nanoparticles (LNPs), serving as essential nanocarriers in recent COVID-19 mRNA vaccines, provide a stable and versatile platform for delivering a wide range of biological materials. Notably, LNPs with unique inverse mesostructures, such as cubosomes and hexosomes, are recognized as fusogenic nanocarriers in the drug delivery field. This study delves into the physicochemical properties, including size, lyotropic liquid crystalline mesophase, and apparent pK of LNPs with various lipid components, consisting of two ionizable lipids (ALC-0315 and SM-102) used in commercial COVID-19 mRNA vaccines and a well-known inverse mesophase structure-forming helper lipid, phytantriol (PT). Two partial mesophase diagrams are generated for both ALC-0315/PT LNPs and SM-102/PT LNPs as a function of two factors, ionizable lipid ratio (α, 0-100 mol%) and pH condition (pH 3-11). Furthermore, the impact of different LNP stabilizers (Pluronic F127, Pluronic F108, and Tween 80) on their pH-dependent phase behavior is evaluated. The findings offer insights into the self-assembled mesostructure and ionization state of the studied LNPs with potentially enhanced endosomal escape ability. This research is relevant to developing innovative next-generation LNP systems for delivering various therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202309200DOI Listing

Publication Analysis

Top Keywords

lyotropic liquid
8
liquid crystalline
8
crystalline mesophase
8
ionizable lipid
8
lipid nanoparticles
8
covid-19 mrna
8
mrna vaccines
8
lnps
6
lipid
5
ph-dependent lyotropic
4

Similar Publications

Nanotechnology has revolutionized drug delivery, which offers innovative ways to maximize treatment efficacy while decreasing side effects. The lyotropic liquid crystalline nanoparticles (LLCNP), such as cubosomes and hexosomes, have gained substantial interest because of their distinctive molecular arrangements. Lipophilic, hydrophilic, and amphiphilic drugs can be encapsulated by cubosomes, making them versatile carriers in drug delivery systems.

View Article and Find Full Text PDF

Ubiquitous Chiral Symmetry Breaking of Conjugated Polymers via Liquid-Liquid Phase Separation.

J Am Chem Soc

September 2025

Department of Chemical and Biomolecular Engineering, Department of Chemistry, Department of Materials Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign,Urbana, Illinois 61801, United States.

Spontaneous chiral symmetry breaking remains a fascination in chemistry, biology, materials science, and even astronomy. Chiral symmetry breaking usually requires intrinsic molecular chirality or extrinsic chiral sources but remains rare in nonchiral systems. Here, we reveal a ubiquitous, entropy-driven chiral symmetry breaking mechanism observed in 22 out of 35 conjugated polymers in the absence of any chiral source─a phenomenon overlooked for decades.

View Article and Find Full Text PDF

Poly(γ-stearyl-l-glutamate) (PSLG) is a semiflexible synthetic polypeptide that forms both thermotropic and lyotropic liquid crystal (LC) phases. We previously showed that spherical nanoparticles (NPs) decorated with another semiflexible helical polymer, poly(hexyl isocyanate), form lyotropic nematic rather than cubic LC phases. In this work, PSLG ligands for functionalizing 4 nm ZrO NPs were prepared via N-carboxyanhydride ring-opening polymerization.

View Article and Find Full Text PDF

Helical structures are ubiquitous in nature and exhibit fascinating properties. They are inherently chiral, and many rely on hydrogen bonds to stabilize their conformation. Homopolypeptides of the glutamate type form α-helical secondary structures and are considered rigid-rod polymers.

View Article and Find Full Text PDF

Hydrophilicity and topology interplay determines positioning of guest molecules in lipid cubic phases.

J Colloid Interface Sci

August 2025

Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland; Department of Materials, ETH Zurich, Zurich 8092, Switzerland. Electronic address:

Lipid nanostructures with inverse bicontinuous cubic symmetries are of paramount importance as delivery structures of active compounds in the pharmaceutical, cosmetic and food science fields. By atomistic molecular dynamics, here we study the internalization of three molecules of varying hydrophilicity, fructose, caffeine and vitamin D, within a cubic phase with primitive symmetry, allowing us to assess how the incorporation of the guest molecule is affected by the interplay between its hydrophilicity and the topology of the host membrane. For lipophilic molecules our results reveal the details of molecular localization and orientation, which allow estimating the bending modulus of the membrane by means of a phenomenological model based on the physics of liquid crystals.

View Article and Find Full Text PDF