Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study aims to investigate cerebral parenchymal and ventricular volume changes after subarachnoid hemorrhage (SAH) and their potential association with cognitive impairment. 17 patients with aneurysmal SAH (aSAH) and 21 patients with angiographically negative SAH (anSAH) without visually apparent parenchymal loss on conventional magnetic resonance imaging (MRI) were included, along with 76 healthy controls. Volumetric analyses were performed using an automated clinical segmentation and quantification tool. Measurements were compared to on-board normative reference database (n = 1923) adjusted for age, sex, and intracranial volume. Cognition was assessed with tests for psychomotor speed, attentional control, (working) memory, executive functioning, and social cognition. All measurements took place 5 months after SAH. Lower cerebral parenchymal volumes were most pronounced in the frontal lobe (aSAH: n = 6 [35%], anSAH n = 7 [33%]), while higher volumes were most substantial in the lateral ventricle (aSAH: n = 5 [29%], anSAH n = 9 [43%]). No significant differences in regional brain volumes were observed between both SAH groups. Patients with lower frontal lobe volume exhibited significantly lower scores in psychomotor speed (U = 81, p = 0.02) and attentional control (t = 2.86, p = 0.004). Additionally, higher lateral ventricle volume was associated with poorer memory (t = 3.06, p = 0.002). Regional brain volume changes in patients with SAH without visible parenchymal abnormalities on MRI can still be quantified using a fully automatic clinical-grade tool, exposing changes which may contribute to cognitive impairment. Therefore, it is important to provide neuropsychological assessment for both SAH groups, also including those with clinically mild symptoms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10830824PMC
http://dx.doi.org/10.1007/s11682-024-00855-0DOI Listing

Publication Analysis

Top Keywords

cerebral parenchymal
12
magnetic resonance
8
resonance imaging
8
parenchymal ventricular
8
ventricular volume
8
subarachnoid hemorrhage
8
volume changes
8
psychomotor speed
8
attentional control
8
frontal lobe
8

Similar Publications

Parasagittal dural space and arachnoid granulations morphology in pre-clinical and early clinical multiple sclerosis.

Mult Scler

September 2025

Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, VA Medical Center, TN Valley Healthcare System, Nashville, TN, USA.

Background: There is limited knowledge on the post-glymphatic structures such as the parasagittal dural (PSD) space and the arachnoid granulations (AGs) in multiple sclerosis (MS).

Objectives: To evaluate differences in volume and macromolecular content of PSD and AG between people with newly diagnosed MS (pwMS), clinically isolated syndrome (pwCIS), or radiologically isolated syndrome (pwRIS) and healthy controls (HCs) and their associations with clinical and radiological disease measures.

Methods: A total of 69 pwMS, pwCIS, pwRIS, and HCs underwent a 3.

View Article and Find Full Text PDF

Parvovirus B19 (PVB19) is an infrequent, serious, yet treatable cause of infection in immunocompromised hosts. Neurological manifestations of PVB19 are encephalitis, encephalopathy, meningitis, cerebellar ataxia, transverse myelitis, stroke, and peripheral neuropathy. The objective is to identify the exact clinical and diagnostic features specific to parvovirus B19 encephalitis for the isolation and management of the pathology.

View Article and Find Full Text PDF

Neuroanatomical profiling of the rainbow trout brain parenchyma and meninges reveals specialized immune niches and region-specific hubs for bacterial immune surveillance.

Dev Comp Immunol

September 2025

Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA. Electronic address:

Several studies have described immune responses in the teleost brain and meninges during infection, however, fundamental studies that systematically dissect how different regions of the brain maintain immune homeostasis in teleosts are missing. Here we present an in-depth investigation of the immune status of the brain parenchyma and meninges of juvenile rainbow trout (Oncorhynchus mykiss) at the steady state. We dissected four parenchymal brain regions including olfactory bulbs (OB), telencephalon (Tel), optic tectum (OT) and cerebellum (Cer) and its corresponding dorsal meninges.

View Article and Find Full Text PDF

Unlabelled: The neurovascular unit is critical for brain health, and its dysfunction has been linked to Alzheimer's disease (AD). However, a cell-type-resolved understanding of how diverse vascular cells become dysfunctional and contribute to disease has been missing. Here, we applied Vessel Isolation and Nuclei Extraction for Sequencing (VINE-seq) to build a comprehensive transcriptomic atlas from 101 individuals along AD progression.

View Article and Find Full Text PDF

Neutrophils and neutrophil extracellular traps (NETs) contribute to early neuromyelitis optica (NMO) histopathology initiated by IgG targeting astrocytic aquaporin-4 water (AQP4) channels. Yet, the mechanisms recruiting neutrophils and their pathogenic roles in disease progression remain unclear. To investigate molecular-cellular events preceding classical complement cascade activation in a mouse NMO model, we continuously infused, via spinal subarachnoid route, a non-complement-activating monoclonal AQP4-IgG.

View Article and Find Full Text PDF