Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

EWSR1 (Ewing Sarcoma Related protein 1) is an RNA binding protein that is ubiquitously expressed across cell lines and involved in multiple parts of RNA processing, such as transcription, splicing, and mRNA transport. EWSR1 has also been implicated in cellular mechanisms to control formation of R-loops, a three-stranded nucleic acid structure consisting of a DNA:RNA hybrid and a displaced single-stranded DNA strand. Unscheduled R-loops result in genomic and transcription stress. Loss of function of EWSR1 functions commonly found in Ewing Sarcoma correlates with high abundance of R-loops. In this study, we investigated the mechanism for EWSR1 to recognize an R-loop structure specifically. Using electrophoretic mobility shift assays (EMSA), we detected the high affinity binding of EWSR1 to substrates representing components found in R-loops. EWSR1 specificity could be isolated to the DNA fork region, which transitions between double- and single-stranded DNA. Our data suggests that the Zinc-finger domain (ZnF) with flanking arginine and glycine rich (RGG) domains provide high affinity binding, while the RNA recognition motif (RRM) with its RGG domains offer improved specificity. This model offers a rational for EWSR1 specificity to encompass a wide range in contexts due to the DNA forks always found with R-loops.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10827230PMC
http://dx.doi.org/10.1101/2024.01.20.576463DOI Listing

Publication Analysis

Top Keywords

ewing sarcoma
12
sarcoma protein
8
dna forks
8
single-stranded dna
8
high affinity
8
affinity binding
8
ewsr1 specificity
8
rgg domains
8
ewsr1
7
r-loops
6

Similar Publications

Background: Sarcomas are rare cancer with a heterogeneous group of tumors. They affect both genders across all age groups and present significant heterogeneity, with more than 70 histological subtypes. Despite tailored treatments, the high metastatic potential of sarcomas remains a major factor in poor patient survival, as metastasis is often the leading cause of death.

View Article and Find Full Text PDF

Embryonic-type neuroectodermal tumor (ENT; previously referred to as primitive neuroectodermal tumor, PNET) of the testis and gynecologic tract share morphologic features with small round blue cell tumors, including Ewing sarcoma (ES), yet are biologically, therapeutically, and prognostically distinct. The diagnosis of ENT can be challenging, and it is unclear if there are reliable biomarkers that can be used to confirm this diagnosis. This study characterized 50 ENTs arising from the testis (n=38) and gynecologic tract (n=12; 7 ovary/5 uterus) with 27 biomarkers (AE1/AE3, ATRX, CD99, chromogranin-A, Cyclin D1, Fli-1, GFAP, GLUT-1, IDH1/2, INSM1, MTAP, NANOG, Nestin, neurofilament, NKX2.

View Article and Find Full Text PDF

An integrated approach is proposed to rapidly evaluate the effects of anticancer treatments in 3D models, combining a droplet-based microfluidic platform for spheroid formation and single-spheroid chemotherapy application, label-free morphological analysis, and machine learning to assess treatment response. Morphological features of spheroids, such as size and color intensity, are extracted and selected using the multivariate information-based inductive causation algorithm, and used to train a neural network for spheroid classification into viability classes, derived from metabolic assays performed within the same platform as a benchmark. The model is tested on Ewing sarcoma cell lines and patient-derived xenograft (PDX) cells, demonstrating robust performance across datasets.

View Article and Find Full Text PDF

Introduction: Pelvic bone sarcomas are rare, heterogeneous malignancies that present significant diagnostic and therapeutic challenges. Despite advances in imaging, surgical navigation, and multidisciplinary care, it remains unclear whether these innovations have improved outcomes across all histiotypes.

Material And Methods: We conducted a retrospective cohort study of 475 patients surgically treated for primary pelvic bone sarcomas between 2003 and 2022.

View Article and Find Full Text PDF