Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Alzheimer's disease (AD) ranks as the most prevalent neurodegenerative disorder with dementia and it accounts for more than 70% of all cases. Despite extensive reporting on the experimental investigation of (DI) and its phytochemical components in the treatment of AD, the urgent need for elucidation of the principle of multi-mechanism and multi-level treatment of AD remains. In this research, molecular docking and network pharmacology were used to evaluate active compounds and molecular targets of DI for the treatment of AD. The phytochemical compounds of DI were obtained from the Indian Medicinal Plants, Phytochemistry, and Therapeutics (IMPPAT) as well as the Traditional Chinese Medicine System Pharmacology (TCMSP) databases. The screening includes the 28 most abundant components of DI and the Swiss Target Prediction database was used to predict targets of these compounds. The GeneCards database was used to collect AD-related genes. Both DI and AD targets were imported into a Venn diagram, and the 28 overlapped genes were identified as potential DI anti-AD targets. The results showed that Dinoxin B, Meteloidine, Scopoline, and Tropic acid had no effect on AD-related genes. Furthermore, the GO enrichment analysis indicates that DI influences molecular functions and biological processes such as learning or memory and modulation of chemical synaptic transmission as well as the membrane raft and membrane microdomain. The KEGG pathway analysis revealed that the key pathways implicated in DI's anti-AD actions include serotonergic synapse, IL-17 signaling pathway, and AGE-RAGE signaling pathway in diabetic complications. Based on the STRING and Cytoscape network-analysis platforms, the top ten anti-AD core targets include APP, CASP3, IL6, BACE1, IL1B, ACE, PSEN1, GAPDH, GSK3B and ACHE. The molecular docking and molecular dynamic simulation of the top two molecules against the top three target proteins confirmed the strong binding affinity and stability at the docked site. Overall, our findings pave the path for further research into the development and optimization of potential anti-AD agents from DI.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2024.2308756DOI Listing

Publication Analysis

Top Keywords

network pharmacology
8
molecular dynamic
8
dynamic simulation
8
molecular docking
8
ad-related genes
8
potential anti-ad
8
signaling pathway
8
molecular
6
targets
5
pharmacology molecular
4

Similar Publications

Replication of HIV-1 requires the coordinated action of host and viral transcription factors, most critically the viral transactivator Tat and the host nuclear factor κB (NF-κB). This activity is disrupted in infected cells that are cultured with extracellular vesicles (EVs) present in human semen, suggesting that they contain factors that could inform the development of new therapeutics. Here, we explored the contents of semen-derived EVs (SEVs) from uninfected donors and individuals with HIV-1 and identified host proteins that interacted with HIV Tat and the NF-κB subunit p65.

View Article and Find Full Text PDF

Praeruptorin A alleviates DSS-induced acute ulcerative colitis in mice via the STAT-1/-3 pathway.

Am J Physiol Regul Integr Comp Physiol

September 2025

Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Ulcerative colitis (UC) is a serious inflammatory bowel disease with a significantly increasing incidence globally. Current treatment options often exhibit unstable efficacy and notable side effects, making the exploration of alternative therapies particularly important. Peucedanum praeruptorum Dunn, a traditional Chinese medicine, contains various bioactive compounds, among which praeruptorin A (PA) has garnered attention for its anti-inflammatory potential.

View Article and Find Full Text PDF

To study the effects of calycosin on palmitic acid-induced HepG2 cells, as well as the potential mechanisms of action. Potential targets of calycosin for the alleviation of insulin resistance were predicted by network pharmacology. Glucose concentration in the culture medium was determined by the GOD-POD method.

View Article and Find Full Text PDF

Excitatory glycine receptors control ventral hippocampus synaptic plasticity and anxiety-related behaviors.

Proc Natl Acad Sci U S A

September 2025

Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris 75005, France.

Excitatory glycine receptors (eGlyRs), composed of the glycine-binding NMDA receptor subunits GluN1 and GluN3A, have recently emerged as a novel neuronal signaling modality that challenges the traditional view of glycine as an inhibitory neurotransmitter. Unlike conventional GluN1/GluN2 NMDARs, the distribution and role of eGlyRs remain poorly understood. Here, we show that eGlyRs are highly enriched in the ventral hippocampus (VH) and confer distinct properties on this brain region.

View Article and Find Full Text PDF

Aims/hypothesis: Unimolecular peptides targeting the receptors for glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and glucagon (GCG) have been shown to improve glycaemic management in both mice and humans. Yet the identity of the downstream signalling events mediated by these peptides remain to be elucidated. Here, we aimed to assess the mechanisms by which a validated peptide triagonist for GLP-1/GIP/GCG receptors (IUB447) stimulates insulin secretion in murine pancreatic islets.

View Article and Find Full Text PDF