Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background & Aims: The mechanism behind the progressive pathological alteration in metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH)-associated hepatocellular carcinoma (HCC) is poorly understood. In the present study, we investigated the role of the polyol pathway enzyme AKR1B1 in metabolic switching associated with MASLD/MASH and in the progression of HCC.
Methods: AKR1B1 expression was estimated in the tissue and plasma of patients with MASLD/MASH, HCC, and HCC with diabetes mellitus. The role of AKR1B1 in metabolic switching assessed through media conditioning, lentiviral transfection, and pharmacological probes. A proteomic and metabolomic approach was applied for the in-depth investigation of metabolic pathways. Preclinically, mice were subjected to a high-fructose diet and diethylnitrosamine to investigate the role of AKR1B1 in the hyperglycemia-mediated metabolic switching characteristic of MASLD-HCC.
Results: A significant increase in the expression of AKR1B1 was observed in tissue and plasma samples from patients with MASLD/MASH, HCC, and HCC with diabetes mellitus compared to normal samples. Mechanistically, assays revealed that AKR1B1 modulates the Warburg effect, mitochondrial dynamics, the tricarboxylic acid cycle, and lipogenesis to promote hyperglycemia-mediated MASLD and cancer progression. A pathological increase in the expression of AKR1B1 was observed in experimental MASLD-HCC, and expression was positively correlated with high blood glucose levels. High-fructose diet + diethylnitrosamine-treated animals also exhibited statistically significant elevation of metabolic markers and carcinogenesis markers. AKR1B1 inhibition with epalrestat or NARI-29 inhibited cellular metabolism in and models.
Conclusions: Pathological AKR1B1 modulates hepatic metabolism to promote MASLD-associated hepatocarcinogenesis. Aldose reductase inhibition modulates the glycolytic pathway to prevent precancerous hepatocyte formation.
Impact And Implications: This research work highlights AKR1B1 as a druggable target in metabolic dysfunction-associated steatotic liver disease (MASLD) and hepatocellular carcinoma (HCC), which could provide the basis for the development of new chemotherapeutic agents. Moreover, our results indicate the potential of plasma AKR1B1 levels as a prognostic marker and diagnostic test for MASLD and associated HCC. Additionally, a major observation in this study was that AKR1B1 is associated with the promotion of the Warburg effect in HCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10820337 | PMC |
http://dx.doi.org/10.1016/j.jhepr.2023.100974 | DOI Listing |