Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Molecules that violate Hund's rule and possess negative singlet-triplet gaps (Δ) have been actively studied for their potential usage in organic light emitting diodes without the need for thermal activation. However, the weak oscillator strength from the symmetry of such molecules has been recognized as their shortcoming for their application in optoelectronic devices. A group of molecules with a common structural motif involving the original molecule with an inverted gap having branches consisting of conjugated molecules of varied structures and extent of conjugation have been predicted to have desirable oscillator strength, but only few detailed and comprehensive studies regarding the form of excited states and the reason behind the improved oscillator strength have been carried out. We show in this work a series of analyses that suggest that the increase of oscillator strength is correlated with the nature of the excited state changing from a localized excitation to a delocalized excitation involving the central molecule and the branches. The resulting oscillator strength thus depends on the energetic matching of the branching molecule and the central molecule, rather than solely the oscillator strength of the central molecule. From the Δ inversion point of view, the static correlation with low-lying doubly excited configurations, the key mechanism behind the inversion in the localized excited state, weakens as the excited states delocalize. As a consequence, the dynamic correlation has a more decisive effect in determining the singlet-triplet gap.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp05580aDOI Listing

Publication Analysis

Top Keywords

oscillator strength
28
central molecule
12
singlet-triplet gap
8
excited states
8
excited state
8
oscillator
7
strength
7
molecule
5
excited
5
extension molecules
4

Similar Publications

Quantum-Size Effect Induced Andreev Bound States in Ultrathin Metallic Islands Proximitized by a Superconductor.

Phys Rev Lett

August 2025

Shanghai Jiao Tong University, Tsung-Dao Lee Institute, Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai 200240, China.

While Andreev bound states (ABSs) have been realized in engineered superconducting junctions, their direct observation in normal metal-superconductor heterostructures-enabled by quantum confinement-remains experimentally elusive. Here, we report the detection of ABSs in ultrathin metallic islands (Bi, Ag, and SnTe) grown on the s-wave superconductor NbN. Using high-resolution scanning tunneling microscopy and spectroscopy, we clearly reveal in-gap ABSs with energies symmetric about the Fermi level.

View Article and Find Full Text PDF

This study investigated the correlation between the strength of correlated effective neural drive (END) to the antagonistic muscles and the fluctuations in neural/electrical and mechanical output around the joint during steady co-contraction, and whether the correlated END strength estimated from conventional surface EMG is correlated with that determined from motor unit (MU) discharges. Fourteen young male participants performed isometric steady co-contractions with their medial gastrocnemius and tibialis anterior muscles at 10% of maximal EMG while sitting. Correlated END strength was quantified as the maximum value of the cross-correlation function between the conventional surface EMG signals and between MU discharges decomposed from high-density surface EMG of each muscle.

View Article and Find Full Text PDF

Background: Postural balance is impaired in adults with asthma; however, this remains poorly understood in older people with asthma.

Objective: To assess postural balance and the incidence of falls in older individuals with moderate to severe asthma.

Methods: A controlled cross-sectional study with follow-up included individuals aged 65 to 80 years (asthma group,AG; n = 26) and without asthma (control group,CG; n = 27).

View Article and Find Full Text PDF

B,N-substituted graphene ribbons are computationally designed and their spectroscopic properties are systematically explored with wave-function-based electronic structure methods. All B,N-graphene ribbons exhibit exceptionally small S-T energy gaps. The oscillator strength of the S-S transition increases monotonically with the length of the ribbons.

View Article and Find Full Text PDF

Optimizing bio-imaging with computationally designed polymer nanoparticles.

J Mater Chem B

September 2025

Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada.

Conjugated polymer nanoparticles (CPNs), especially poly(-phenylene ethynylene) nanoparticles (PPE-NPs), are promising candidates for bio-imaging due to their high photostability, adjustable optical characteristics, and biocompatibility. Despite their potential, the fluorescence mechanisms of these nanoparticles are not yet fully understood. In this work, we modeled a spherical PPE-NP in a water environment using 30 PPE dimer chains.

View Article and Find Full Text PDF