Prodigiosin Inhibits Transforming Growth Factor Signaling by Interfering Receptor Recycling and Subcellular Translocation in Epithelial Cells.

Mol Pharmacol

Departments of Marine Biotechnology and Resources (S.-B.T., Z.-H.W.) and Biological Sciences (C.-L.Chu., C.-L.Che.), National Sun Yat-Sen University, Kaohsiung, Taiwan; Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Zuoying Armed Forces General Hospital, Kaohsiung

Published: March 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Prodigiosin (PG) is a naturally occurring polypyrrole red pigment produced by numerous microorganisms including some and strains. PG has exhibited promising anticancer activity; however, the molecular mechanisms of action of PG on malignant cells remain ambiguous. Transforming growth factor- (TGF-) is a multifunctional cytokine that governs a wide array of cellular processes in development and tissue homeostasis. Malfunctions of TGF- signaling are associated with numerous human cancers. Emerging evidence underscores the significance of internalized TGF- receptors and their intracellular trafficking in initiating signaling cascades. In this study, we identified PG as a potent inhibitor of the TGF- pathway. PG blocked TGF- signaling by targeting multiple sites of this pathway, including facilitating the sequestering of TGF- receptors in the cytoplasm by impeding the recycling of type II TGF- receptors to the cell surface. Additionally, PG prompts a reduction in the abundance of receptors on the cell surface through the disruption of the receptor glycosylation. In human Caucasian lung carcinoma cells and human hepatocellular cancer cell line cells, nanomolar concentrations of PG substantially diminish TGF--triggered phosphorylation of Smad2 protein. This attenuation is further reflected in the suppression of downstream target gene expression, including those encoding fibronectin, plasminogen activator inhibitor-1, and N-cadherin. SIGNIFICANCE STATEMENT: Prodigiosin (PG) emerges from this study as a potent TGF-β pathway inhibitor, disrupting receptor trafficking and glycosylation and reducing TGF-β signaling and downstream gene expression. These findings not only shed light on PG's potential therapeutic role but also present a captivating avenue towards future anti-TGF-β strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1124/molpharm.123.000776DOI Listing

Publication Analysis

Top Keywords

tgf- receptors
12
transforming growth
8
tgf- signaling
8
receptors cell
8
cell surface
8
gene expression
8
tgf-
7
signaling
5
prodigiosin inhibits
4
inhibits transforming
4

Similar Publications

Diabetic cardiomyopathy (DCM) is a progressive heart disorder associated with diabetes mellitus, leading to structural and functional cardiac abnormalities. The mechanisms responsible include renin-angiotensin-aldosterone (RAAS) activation, inflammation, apoptosis, and metabolic disturbances. Despite well-established epidemiological links, treatments for DCM are elusive.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is characterized by vasoconstriction, proliferation, fibrosis, and microthrombosis of the pulmonary vasculature, which causes elevated pulmonary arterial pressure and vascular resistance leading to right ventricular failure and death. Previous treatments targeted three known pathways involved in the development of PAH: endothelin, nitric oxide, and prostacyclin. Dysfunctional signaling of the transforming growth factor-beta (TGF-β) family, via bone morphogenetic protein (BMP) receptor 2 and activin signaling, has also been implicated in PAH leading to the development of a new class of therapies.

View Article and Find Full Text PDF

Serum Proteomic Profile Based on the TGF-β Pathway Stratifies Risk of Hepatocellular Carcinoma.

Liver Int

October 2025

Division of Gastroenterology and Hepatology, Department of Medicine, The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Northwell Health, Manhasset, New York, USA.

Background: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths, primarily due to late-stage diagnosis. In this multicenter study, our goal is to identify functional biomarkers that stratify the risk of HCC in patients with cirrhosis (CP) for early diagnosis.

Methods: Five thousand and eight serum proteins (Somascan) were analysed in Cohort A (477 CP, including 125 HCC).

View Article and Find Full Text PDF

Hirudin, a polypeptide extracted from medicinal leeches, has demonstrated potential in treating renal fibrosis. This study aimed to explore the underlying mechanisms by which Hirudin alleviates renal fibrosis. Renal fibrosis models were established using unilateral ureteral obstruction (UUO) surgery in rats and transforming growth factor-β (TGF-β)-induced HK-2 cells, followed by treatment with different concentrations of Hirudin.

View Article and Find Full Text PDF

Estrogen Receptor-α Loss Accelerates Cartilage Degradation through CLEC3B-Mediated Chondrocyte Hypertrophy and Inflammation.

Osteoarthritis Cartilage

September 2025

Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA; Orland Bethel Family Musculoskeletal Research Center, University of Pittsburgh School of Med

Objective: Previous studies in our lab demonstrated that estrogen receptor-α (ERα) levels in cartilage decreased with osteoarthritis (OA). We also defined the essential role of ERα in maintaining the health of chondrocytes. However, most of the studies were conducted in vitro, and the physiological link between ERα loss and cartilage degradation has not been demonstrated using animal models.

View Article and Find Full Text PDF