98%
921
2 minutes
20
Automated insulin delivery (AID) is now integral to the clinical practice of type 1 diabetes (T1D). The objective of this pilot-feasibility study was to introduce a new regulatory and clinical paradigm-a Neural-Net Artificial Pancreas (NAP)-an encoding of an AID algorithm into a neural network that approximates its action and assess NAP versus the original AID algorithm. The University of Virginia Model-Predictive Control (UMPC) algorithm was encoded into a neural network, creating its NAP approximation. Seventeen AID users with T1D were recruited and 15 participated in two consecutive 20-h hotel sessions, receiving in random order either NAP or UMPC. Their demographic characteristics were ages 22-68 years old, duration of diabetes 7-58 years, gender 10/5 female/male, White Non-Hispanic/Black 13/2, and baseline glycated hemoglobin 5.4%-8.1%. The time-in-range (TIR) difference between NAP and UMPC, adjusted for entry glucose level, was 1 percentage point, with absolute TIR values of 86% (NAP) and 87% (UMPC). The two algorithms achieved similar times <70 mg/dL of 2.0% versus 1.8% and coefficients of variation of 29.3% (NAP) versus 29.1 (UMPC)%. Under identical inputs, the average absolute insulin-recommendation difference was 0.031 U/h. There were no serious adverse events on either controller. NAP had sixfold lower computational demands than UMPC. In a randomized crossover study, a neural-network encoding of a complex model-predictive control algorithm demonstrated similar performance, at a fraction of the computational demands. Regulatory and clinical doors are therefore open for contemporary machine-learning methods to enter the AID field. Clinical Trial Registration number: NCT05876273.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11305265 | PMC |
http://dx.doi.org/10.1089/dia.2023.0469 | DOI Listing |
Work
July 2025
Escuela de Estudios Industriales y Empresariales, Universidad Industrial de Santander, Bucaramanga, Colombia.
BackgroundWork accidents have been studied from the perspective of outcome indicators, quantifying the frequency and severity of the occurrences. However, accidents at work continue to be a problem. In 2019, 611,275 accidents occurred in Colombia.
View Article and Find Full Text PDFComput Struct Biotechnol J
April 2025
IRCCS SYNLAB SDN, Via Ferraris 144, Napoli, 80142, Italy.
Background And Objective: In recent years, DNA methylation-tumor classification based on artificial intelligence algorithms has led to a notable improvement in diagnostic accuracy compared to traditional machine learning methods. In cancer, the methylation pattern likely reflects both the cell of origin and somatically acquired DNA methylation changes, making this epigenetic modification an ideal tool for tumor classification. We propose an in-depth method based on the Convolutional Neural Network for the DNA methylation-based classification of papillary thyroid carcinoma (PTC) and its follicular (fvPTC) and classical (cvPTC) subtypes.
View Article and Find Full Text PDFMetab Eng
September 2025
Department of Chemical Engineering, Imperial College London, London, United Kingdom. Electronic address:
Genome-scale metabolic models (GEMs) have been widely utilized to understand cellular metabolism. The application of GEMs has been advanced by computational methods that enable the prediction and analysis of intracellular metabolic states. However, the accuracy and biological relevance of these predictions often suffer from the many degrees of freedom and scarcity of available data to constrain the models adequately.
View Article and Find Full Text PDFEnviron Monit Assess
March 2025
International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, 502324, India.
Rice crop disease is critical in precision agriculture due to various influencing components and unstable environments. The current study uses machine learning (ML) models to predict rice crop disease in Eastern India based on biophysical factors for current and future scenarios. The nine biophysical parameters are precipitation (Pr), maximum temperature (T), minimum temperature (T), soil texture (ST), available water capacity (AWC), normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), normalized difference chlorophyll index (NDCI), and normalized difference moisture index (NDMI) by Random forest (RF), Gradient Boosting Machine (GBM), Extreme Gradient Boosting (XGB), Artificial Neural Net (ANN), and Support vector Machine (SVM).
View Article and Find Full Text PDFPLoS One
May 2025
Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America.
Mental illnesses put a tremendous burden on afflicted individuals and society. Identification of novel drugs to treat such conditions is intrinsically challenging due to the complexity of neuropsychiatric diseases and the need for a systems-level understanding that goes beyond single molecule-target interactions. Thus far, drug discovery approaches focused on target-based in silico or in vitro high-throughput screening (HTS) have had limited success because they cannot capture pathway interactions or predict how a compound will affect the whole organism.
View Article and Find Full Text PDF