Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Limited studies explore the use of AI for COVID-19 prognostication. This study investigates the relationship between AI-aided radiographic parameters, clinical and laboratory data, and mortality in hospitalized COVID-19 patients. We conducted a multicentre retrospective study. The derivation and validation cohort comprised of 512 and 137 confirmed COVID-19 patients, respectively. Variable selection for constructing an in-hospital mortality scoring model was performed using the least absolute shrinkage and selection operator, followed by logistic regression. The accuracy of the scoring model was assessed using the area under the receiver operating characteristic curve. The final model included eight variables: anosmia (OR: 0.280; 95%CI 0.095-0.826), dyspnoea (OR: 1.684; 95%CI 1.049-2.705), loss of consciousness (OR: 4.593; 95%CI 1.702-12.396), mean arterial pressure (OR: 0.928; 95%CI 0.900-0.957), peripheral oxygen saturation (OR: 0.981; 95%CI 0.967-0.996), neutrophil % (OR: 1.034; 95%CI 1.013-1.055), serum urea (OR: 1.018; 95%CI 1.010-1.026), affected lung area score (OR: 1.026; 95%CI 1.014-1.038). The Integrated Inpatient Mortality Prediction Score for COVID-19 (IMPACT) demonstrated a predictive value of 0.815 (95% CI 0.774-0.856) in the derivation cohort. Internal validation resulted in an AUROC of 0.770 (95% CI 0.661-0.879). Our study provides valuable evidence of the real-world application of AI in clinical settings. However, it is imperative to conduct prospective validation of our findings, preferably utilizing a control group and extending the application to broader populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10810804 | PMC |
http://dx.doi.org/10.1038/s41598-023-50564-9 | DOI Listing |