98%
921
2 minutes
20
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by CAG trinucleotide repeat expansions in exon 1 of the HTT gene. In addition to germline CAG expansions, somatic repeat expansions in neurons also contribute to HD pathogenesis. The DNA mismatch repair gene, MSH3, identified as a genetic modifier of HD onset and progression, promotes somatic CAG expansions, and thus presents a potential therapeutic target. However, what extent of MSH3 protein reduction is needed to attenuate somatic CAG expansions and elicit therapeutic benefits in HD disease models is less clear. In our study, we employed potent di-siRNAs to silence mouse Msh3 mRNA expression in a dose-dependent manner in Hdh mice and correlated somatic Htt CAG instability with MSH3 protein levels from simultaneously isolated DNA and protein after siRNA treatment. Our results reveal a linear correlation with a proportionality constant of ~ 1 between the prevention of somatic Htt CAG expansions and MSH3 protein expression in vivo, supporting MSH3 as a rate-limiting step in somatic expansions. Intriguingly, despite a 75% reduction in MSH3 protein levels, striatal nuclear HTT aggregates remained unchanged. We also note that evidence for nuclear Msh3 mRNA that is inaccessible to RNA interference was found, and that MSH6 protein in the striatum was upregulated following MSH3 knockdown in Hdh mice. These results provide important clues to address critical questions for the development of therapeutic molecules targeting MSH3 as a potential therapeutic target for HD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10808119 | PMC |
http://dx.doi.org/10.1038/s41598-024-52667-3 | DOI Listing |
Brain Commun
August 2025
Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA.
was identified in human and mouse Huntington's disease brain as the pathogenic exon 1 mRNA generated from aberrant splicing between exon 1 and 2 of that contributes to aggregate formation and neuronal dysfunction. Detection of the huntingtin exon 1 protein (HTT1a) has been accomplished with Meso Scale Discovery, Homogeneous Time Resolved Fluorescence and immunoprecipitation assays in Huntington's disease knock-in mice, but direct detection in homogenates by gel electrophoresis and western blot assay has been lacking. Subcellular fractions prepared from mouse and human Huntington's disease brain were separated by gel electrophoresis and probed by western blot with neoepitope monoclonal antibodies 1B12 and 11G2 directed to the C-terminal eight residues of HTT1a.
View Article and Find Full Text PDFNeurogenetics
September 2025
Nur International University, 54600, Lahore, Punjab, Pakistan.
Huntington's disease (HD) is a progressive, autosomal dominant neurodegenerative disorder characterized by motor dysfunction, cognitive decline, and psychiatric disturbances. It is caused by CAG repeat expansions in the HTT gene, resulting in the formation of mutant huntingtin protein that aggregates and disrupts neuronal function. This review outlines the pathogenesis of HD, including genetic, molecular, and environmental factors.
View Article and Find Full Text PDFNeurotherapeutics
September 2025
Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA. Electronic address:
Spinal and bulbar muscular atrophy (SBMA) is a CAG/polyglutamine (polyQ) repeat expansion disorder in which the mutant androgen receptor (AR) protein triggers progressive degeneration of the neuromuscular system in men. As the misfolded polyQ AR is the proximal mediator of toxicity, therapeutic efforts have focused on targeting the mutant protein, but these prior efforts have met with limited success in SBMA patients. Here, we examine the efficacy of small molecule AR proteolysis-targeting chimera (PROTAC) degraders that rapidly and potently promote AR ubiquitination and degradation by the proteasome.
View Article and Find Full Text PDFIn Silico Pharmacol
September 2025
School of Pharmacy, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra India.
Unlabelled: Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by CAG repeat expansion in the HTT gene, leading to oxidative stress, mitochondrial dysfunction, and neuroinflammation. Conventional therapies offer only symptomatic relief with limited efficacy. This study aimed to explore the neuroprotective potential of (MP) and (BS) through an integrative bioinformatics approach, targeting multiple pathological mechanisms implicated in HD.
View Article and Find Full Text PDFBMC Neurol
September 2025
Department of Neurology, Asahi General Hospital, 1326 I, Asahi, Chiba 289-2511, Japan.
Background: Spinocerebellar ataxia type 8 (SCA8) is a rare neurodegenerative disease that is caused by CAG/CTG repeat expansion in the overlapping ATXN8 and ATXN8OS genes and basically entails slowly progressive cerebellar dysfunction with resultant dysarthria, limb incoordination, and gait instability. Moreover, patients with SCA8 may also exhibit pyramidal and extrapyramidal signs, cognitive decline, and involuntary movements. Although SCA8 is an autosomal dominant inheritance disorder, it sometimes seems to be sporadic because of reduced penetrance.
View Article and Find Full Text PDF