A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Medical image synthesis via conditional GANs: Application to segmenting brain tumours. | LitMetric

Medical image synthesis via conditional GANs: Application to segmenting brain tumours.

Comput Biol Med

School of Computing, Queen's University, Kingston, ON, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada. Electronic address:

Published: March 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurate brain tumour segmentation is critical for tasks such as surgical planning, diagnosis, and analysis, with magnetic resonance imaging (MRI) being the preferred modality due to its excellent visualisation of brain tissues. However, the wide intensity range of voxel values in MR scans often results in significant overlap between the density distributions of different tumour tissues, leading to reduced contrast and segmentation accuracy. This paper introduces a novel framework based on conditional generative adversarial networks (cGANs) aimed at enhancing the contrast of tumour subregions for both voxel-wise and region-wise segmentation approaches. We present two models: Enhancement and Segmentation GAN (ESGAN), which combines classifier loss with adversarial loss to predict central labels of input patches, and Enhancement GAN (EnhGAN), which generates high-contrast synthetic images with reduced inter-class overlap. These synthetic images are then fused with corresponding modalities to emphasise meaningful tissues while suppressing weaker ones. We also introduce a novel generator that adaptively calibrates voxel values within input patches, leveraging fully convolutional networks. Both models employ a multi-scale Markovian network as a GAN discriminator to capture local patch statistics and estimate the distribution of MR images in complex contexts. Experimental results on publicly available MR brain tumour datasets demonstrate the competitive accuracy of our models compared to current brain tumour segmentation techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.107982DOI Listing

Publication Analysis

Top Keywords

brain tumour
12
tumour segmentation
8
voxel values
8
input patches
8
synthetic images
8
brain
5
tumour
5
segmentation
5
medical image
4
image synthesis
4

Similar Publications