A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Enzymatic isolation and microfluidic electrophoresis analysis of residual dsRNA impurities in mRNA vaccines and therapeutics. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The versatility, rapid development, and ease of production scalability of mRNA therapeutics have placed them at the forefront of biopharmaceutical research. However, despite their vast potential to treat diseases, their novelty comes with unsolved analytical challenges. A key challenge in ensuring sample purity has been monitoring residual, immunostimulatory dsRNA impurities generated during the transcription of mRNA. Here, we present a method that combines an enzyme, S1 nuclease, to identify and isolate dsRNA from an mRNA sample with a microfluidic electrophoresis analytical platform to characterize the impurity. After the method was developed and optimized, it was tested with clinically relevant, pseudouridine-modified 700 and 1800 bp dsRNA and 818-4451 nt mRNA samples. While the treatment impacted the magnitude of the fluorescent signal used to analyze the samples due to the interference of the buffer with the labeling of the sample, this signal loss was mitigated by 8.8× treatment optimization. In addition, despite the mRNA concentration being up to 400× greater than that of the dsRNA, under every condition, there was a complete disappearance of the main mRNA peak. While the mRNA peak was digested, the dsRNA fragments remained physically unaffected by the treatment, with no change to their migration time. Using these samples, we detected 0.25% dsRNA impurities in mRNA samples using 15 μL with an analytical runtime of 1 min per sample after digestion and were able to predict their size within 8% of the expected length. The short runtime, sample consumption, and high throughput compatibility make it suitable to support the purity assessment of mRNA during purification and downstream.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3an02157bDOI Listing

Publication Analysis

Top Keywords

dsrna impurities
12
mrna
10
microfluidic electrophoresis
8
impurities mrna
8
mrna samples
8
mrna peak
8
dsrna
7
sample
5
enzymatic isolation
4
isolation microfluidic
4

Similar Publications