98%
921
2 minutes
20
We studied spatial variation in the effects of environment and network size on species positions and roles in multiple flea-mammal networks from four biogeographic realms. We asked whether species positions (measured as species strength [SS], the degree of interaction specialization [d'], and the eigenvector centrality [C]) or the roles of fleas and their hosts in the interaction networks: (a) are repeatable/conserved within a flea or a host species; (b) vary in dependence on environmental variables and/or network size; and (c) the effects of environment and network size on species positions or roles in the networks depend on species traits. The repeatability analysis of species position indices for 441 flea and 429 host species, occurring in at least two networks, demonstrated that the repeatability of SS, d', and C within a species was significant, although not especially high, suggesting that the indices' values were affected by local factors. The majority of flea and host species in the majority of networks demonstrated a peripheral role. A value of at least one index of species position was significantly affected by environmental variables or network size in 41 and 36, respectively, of the 52 flea and 52 host species that occurred in multiple networks. In both fleas and hosts, the occurrence of the significant effect of environment or network size on at least one index of species position, but not on a species' role in a network, was associated with some species traits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1749-4877.12799 | DOI Listing |
Pest Manag Sci
September 2025
Laboratory of Applied Entomology, Graduate School of Horticulture, Chiba University, Chiba, Japan.
Background: The coevolutionary arms race between echolocating bats and tympanate moths has driven the evolution of ultrasound-mediated escape behaviors in moths. Bat-emitted ultrasonic pulses vary in sound intensity and temporal structure, with pulse repetition rate (PRR) which intrinsically encode critical information about predation risk, i.e.
View Article and Find Full Text PDFFront Vet Sci
August 2025
Faculty of Veterinary Medicine, Lusófona University-Lisbon University Centre, Lisbon, Portugal.
Introduction: is a well-recognized etiologic agent of upper respiratory tract disease in tortoises. Although frequently reported in both captive and wild populations across Europe, its occurrence in Portugal had not been previously documented. This study aimed to investigate the presence of in apparently healthy captive tortoises in mainland Portugal and to evaluate potential host- and management-related factors associated with infection.
View Article and Find Full Text PDFWellcome Open Res
August 2025
Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA.
Arenaviruses and Hantaviruses, primarily hosted by rodents and shrews, represent significant public health threats due to their potential for zoonotic spillover into human populations. Despite their global distribution, the full impact of these viruses on human health remains poorly understood, particularly in regions like Africa, where data is sparse. Both virus families continue to emerge, with pathogen evolution and spillover driven by anthropogenic factors such as land use change, climate change, and biodiversity loss.
View Article and Find Full Text PDFJ R Soc Interface
September 2025
UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK.
Severe fever with thrombocytopaenia syndrome virus (SFTSV) was identified by the World Health Organization as a priority pathogen due to its high case-fatality rate in humans and rapid spread. It is maintained in nature through three transmission pathways: systemic, non-systemic and transovarial. Understanding the relative contributions of these transmission pathways is crucial for developing evidence-informed public health interventions to reduce its spillover risks to humans.
View Article and Find Full Text PDFImmunol Lett
September 2025
Department of Clinical and Translational Science, College of Graduate Health Science, University of Tennessee Health Science Center, Memphis, Tennessee. Electronic address:
Background: Patients with chronic lung diseases often suffer from pulmonary aspergillosis, caused by Aspergillus fumigatus (AF). Alveolar macrophages play a key role in the initial immune response to AF. Azithromycin (AZM), commonly known for its immunomodulatory properties in reducing exacerbations and improving lung function, has mixed effects on the development of aspergillosis.
View Article and Find Full Text PDF