Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Human-centric artificial intelligence (HCAI) aims to provide support systems that can act as peer companions to an expert in a specific domain, by simulating their way of thinking and decision-making in solving real-life problems. The gynaecological artificial intelligence diagnostics (GAID) assistant is such a system. Based on artificial intelligence (AI) argumentation technology, it was developed to incorporate, as much as possible, a complete representation of the medical knowledge in gynaecology and to become a real-life tool that will practically enhance the quality of healthcare services and reduce stress for the clinician. Our study aimed to evaluate GAIDS' efficacy and accuracy in assisting the working expert gynaecologist during day-to-day clinical practice.

Methods: Knowledge-based systems utilize a knowledge base (theory) which holds evidence-based rules ("IF-THEN" statements) that are used to prove whether a conclusion (such as a disease, medication or treatment) is possible or not, given a set of input data. This approach uses argumentation frameworks, where rules act as claims that support a specific decision (arguments) and argue for its dominance over others. The result is a set of admissible arguments which support the final decision and explain its cause.

Results: Based on seven different subcategories of gynaecological presentations-bleeding, endocrinology, cancer, pelvic pain, urogynaecology, sexually transmitted infections and vulva pathology in fifty patients-GAID demonstrates an average overall closeness accuracy of zero point eighty-seven. Since the system provides explanations for supporting a diagnosis against other possible diseases, this evaluation process further allowed for a learning process of modular improvement in the system of the diagnostic discrepancies between the system and the specialist.

Conclusions: GAID successfully demonstrates an average accuracy of zero point eighty-seven when measuring the closeness of the system's diagnosis to that of the senior consultant. The system further provides meaningful and helpful explanations for its diagnoses that can help clinicians to develop an increasing level of trust towards the system. It also provides a practical database, which can be used as a structured history-taking assistant and a friendly, patient record-keeper, while improving precision by providing a full list of differential diagnoses. Importantly, the design and implementation of the system facilitates its continuous development with a set methodology that allows minimal revision of the system in the face of new information. Further large-scale studies are required to evaluate GAID more thoroughly and to identify its limiting boundaries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10815463PMC
http://dx.doi.org/10.3390/healthcare12020223DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
16
gynaecological artificial
8
intelligence diagnostics
8
diagnostics gaid
8
system
8
demonstrates average
8
accuracy point
8
point eighty-seven
8
gaid
5
intelligence
4

Similar Publications

Background: Subcellular localisation is a determining factor of protein function. Mass spectrometry-based correlation profiling experiments facilitate the classification of protein subcellular localisation on a proteome-wide scale. In turn, static localisations can be compared across conditions to identify differential protein localisation events.

View Article and Find Full Text PDF

Oral cancer is a major global health burden, ranking sixth in prevalence, with oral squamous cell carcinoma (OSCC) being the most common type. Importantly, OSCC is often diagnosed at late stages, underscoring the need for innovative methods for early detection. The oral microbiome, an active microbial community within the oral cavity, holds promise as a biomarker for the prediction and progression of cancer.

View Article and Find Full Text PDF

Postoperative aphasia (POA) is a common complication in patients undergoing surgery for language-eloquent lesions. This study aimed to enhance the prediction of POA by leveraging preoperative navigated transcranial magnetic stimulation (nTMS) language mapping and diffusion tensor imaging (DTI)-based tractography, incorporating deep learning (DL) algorithms. One hundred patients with left-hemispheric lesions were retrospectively enrolled (43 developed postoperative aphasia, as the POA group; 57 did not, as the non-aphasia (NA) group).

View Article and Find Full Text PDF

In recent AI-driven disease diagnosis, the success of models has depended mainly on extensive data sets and advanced algorithms. However, creating traditional data sets for rare or emerging diseases presents significant challenges. To address this issue, this study introduces a direct-self-attention Wasserstein generative adversarial network (DSAWGAN) designed to improve diagnostic capabilities in infectious diseases with limited data availability.

View Article and Find Full Text PDF

Applications driven by large language models (LLMs) are reshaping higher education by offering innovative tools that enhance learning, streamline administrative tasks, and support scholarly work. However, their integration into education institutions raises ethical concerns related to bias, misinformation, and academic integrity, necessitating thoughtful institutional responses. This article explores the evolving role of LLMs in midwifery higher education, providing historical context, key capabilities, and ethical considerations.

View Article and Find Full Text PDF