Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Contrasting findings on the mechanisms of chronic pain and hypertension development render the current conventional evidence of a negative relationship between blood pressure (BP) and pain severity insufficient for developing personalized treatments. In this interdisciplinary study, patients with fibromyalgia (FM) exhibiting clinically normal or elevated BP, alongside healthy participants were assessed. Different pain sensitization responses were evaluated using a dynamic 'slowly repeated evoked pain' (SREP) measure, as well as static pain pressure threshold and tolerance measures. Cardiovascular responses to clino-orthostatic (lying-standing) challenges were also examined as acute re- and de-hydration events, challenging cardiovascular and cerebrovascular homeostasis. These challenges involve compensating effects from various cardiac preload or afterload mechanisms associated with different homeostatic body hydration statuses. Additionally, hair cortisol concentration was considered as a factor with an impact on chronic hydration statuses. Pain windup (SREP) and lower pain threshold in FM patients were found to be related to BP rise during clinostatic (lying) rehydration or orthostatic (standing) dehydration events, respectively. These events were determined by acute systemic vasoconstriction (i.e., cardiac afterload response) overcompensating for clinostatic or orthostatic cardiac preload under-responses (low cardiac output or stroke volume). Lower pain tolerance was associated with tonic blood pressure reduction, determined by permanent hypovolemia (low stroke volume) decompensated by permanent systemic vasodilation. In conclusion, the body hydration status profiles assessed by (re)activity of systemic vascular resistance and effective blood volume-related measures can help predict the risk and intensity of different pain sensitization components in chronic pain syndrome, facilitating a more personalized management approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803325 | PMC |
http://dx.doi.org/10.1038/s41598-024-52419-3 | DOI Listing |