A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

An artificial intelligence system for chronic atrophic gastritis diagnosis and risk stratification under white light endoscopy. | LitMetric

An artificial intelligence system for chronic atrophic gastritis diagnosis and risk stratification under white light endoscopy.

Dig Liver Dis

Renmin Hospital of Wuhan University, Wuhan, PR China; Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, PR China; Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University,

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Aims: The diagnosis and stratification of gastric atrophy (GA) predict patients' gastric cancer progression risk and determine endoscopy surveillance interval. We aimed to construct an artificial intelligence (AI) system for GA endoscopic identification and risk stratification based on the Kimura-Takemoto classification.

Methods: We constructed the system using two trained models and verified its performance. First, we retrospectively collected 869 images and 119 videos to compare its performance with that of endoscopists in identifying GA. Then, we included original image cases of 102 patients to validate the system for stratifying GA and comparing it with endoscopists with different experiences.

Results: The sensitivity of model 1 was higher than that of endoscopists (92.72% vs. 76.85 %) at image level and also higher than that of experts (94.87% vs. 85.90 %) at video level. The system outperformed experts in stratifying GA (overall accuracy: 81.37 %, 73.04 %, p = 0.045). The accuracy of this system in classifying non-GA, mild GA, moderate GA, and severe GA was 80.00 %, 77.42 %, 83.33 %, and 85.71 %, comparable to that of experts and better than that of seniors and novices.

Conclusions: We established an expert-level system for GA endoscopic identification and risk stratification. It has great potential for endoscopic assessment and surveillance determinations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dld.2024.01.177DOI Listing

Publication Analysis

Top Keywords

risk stratification
12
artificial intelligence
8
intelligence system
8
system endoscopic
8
endoscopic identification
8
identification risk
8
system
7
system chronic
4
chronic atrophic
4
atrophic gastritis
4

Similar Publications