A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Insights into the differential molecular response of non-germinated and germinated spores of Ameson portunus in vitro by comparative transcriptome analysis. | LitMetric

Insights into the differential molecular response of non-germinated and germinated spores of Ameson portunus in vitro by comparative transcriptome analysis.

J Invertebr Pathol

The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266237, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China. Electroni

Published: March 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ameson portunus, the recently discovered causative agent of "toothpaste disease" of pond-cultured swimming crabs in China has caused enormous economic losses in aquaculture. Understanding the process of spore germination is helpful to elucidate the molecular mechanism of its invasion of host cells. Here, we obtained mature and germinating spores by isolation and purification and in vitro stimulation, respectively. Then, non-germinated and germinated spores were subjected to the comparative transcriptomic analysis to disclose differential molecular responses of these two stages. The highest germination rate, i.e., 71.45 %, was achieved in 0.01 mol/L KOH germination solution. There were 9,609 significantly differentially expressed genes (DEGs), with 685 up-regulated and 8,924 down-regulated DEGs. The up-regulated genes were significantly enriched in ribosome pathway, and the down-regulated genes were significantly enriched in various metabolic pathways, including carbohydrate metabolism, amino acid metabolism and other metabolism. The results suggested that spores require various carbohydrates and amino acids as energy to support their life activities during germination and synthesize large amounts of ribosomal proteins to provide sites for DNA replication, transcription, translation and protein synthesis of the spores of A. portunus within the host cells. Functional genes related to spore germination, such as protein phosphatase CheZ and aquaporin, were also analyzed. The analysis of transcriptome data and identification of functional genes will help to understand the process of spore germination and invasion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jip.2024.108066DOI Listing

Publication Analysis

Top Keywords

spore germination
12
differential molecular
8
non-germinated germinated
8
germinated spores
8
ameson portunus
8
process spore
8
host cells
8
genes enriched
8
functional genes
8
germination
6

Similar Publications