A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Tailoring the Position of Ester Group on N-Alkyl Chains of Benzotriazole-based Small Molecule Acceptors for High-Performance Organic Solar Cells. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Side chain engineering plays a vital role in exploring high-performance small molecule acceptors (SMAs) for organic solar cells (OSCs). In this work, we designed and synthesized a series of A-DA'D-A type SMAs by introducing different N-substituted alkyl and ester alkyl side chains on benzotriazole (BZ) central unit and aimed to investigate the effect of different ester substitution positions on photovoltaic performances. All the new SMAs with ester groups exhibit lower the lowest unoccupied molecular orbital (LUMO) energy levels and more blue-shifted absorption, but relatively higher absorption coefficients than alkyl chain counterpart. After blending with the donor PM6, the ester side chain-based devices demonstrate enhanced charge mobility, reduced amorphous intermixing domain size and long-lived charge transfer state compared to the alkyl chain counterpart, which are beneficial to achieve higher short-circuit current density (J ) and fill factor (FF), simultaneously. Thereinto, the PM6 : BZ-E31 based device achieves a higher power conversion efficiency (PCE) of 18.33 %, which is the highest PCE among the OSCs based on the SMAs with BZ-core. Our work demonstrated the strategy of ester substituted side chain is a feasible and effective approach to develop more efficient SMAs for OSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202319635DOI Listing

Publication Analysis

Top Keywords

small molecule
8
molecule acceptors
8
organic solar
8
solar cells
8
side chain
8
alkyl chain
8
chain counterpart
8
ester
6
smas
5
tailoring position
4

Similar Publications