A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Multi-contrast high-field quality image synthesis for portable low-field MRI using generative adversarial networks and paired data. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Portable low-field strength (64mT) MRI scanners promise to increase access to neuroimaging for clinical and research purposes, however these devices produce lower quality images compared to high-field scanners. In this study, we developed and evaluated a deep learning architecture to generate high-field quality brain images from low-field inputs using a paired dataset of multiple sclerosis (MS) patients scanned at 64mT and 3T.

Methods: A total of 49 MS patients were scanned on portable 64mT and standard 3T scanners at Penn (n=25) or the National Institutes of Health (NIH, n=24) with T1-weighted, T2-weighted and FLAIR acquisitions. Using this paired data, we developed a generative adversarial network (GAN) architecture for low- to high-field image translation (LowGAN). We then evaluated synthesized images with respect to image quality, brain morphometry, and white matter lesions.

Results: Synthetic high-field images demonstrated visually superior quality compared to low-field inputs and significantly higher normalized cross-correlation (NCC) to actual high-field images for T1 (p=0.001) and FLAIR (p<0.001) contrasts. LowGAN generally outperformed the current state-of-the-art for low-field volumetrics. For example, thalamic, lateral ventricle, and total cortical volumes in LowGAN outputs did not differ significantly from 3T measurements. Synthetic outputs preserved MS lesions and captured a known inverse relationship between total lesion volume and thalamic volume.

Conclusions: LowGAN generates synthetic high-field images with comparable visual and quantitative quality to actual high-field scans. Enhancing portable MRI image quality could add value and boost clinician confidence, enabling wider adoption of this technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10793526PMC
http://dx.doi.org/10.1101/2023.12.28.23300409DOI Listing

Publication Analysis

Top Keywords

high-field quality
8
portable low-field
8
generative adversarial
8
paired data
8
quality brain
8
low-field inputs
8
patients scanned
8
high-field images
8
quality
5
images
5

Similar Publications