A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Disruption Mechanisms of Enveloped Viruses by Ionic and Nonionic Surfactants. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The world has witnessed multiple pandemics and endemics caused by enveloped viruses in the past century. To name a few, the ongoing COVID-19 pandemic and other pandemics/endemics caused by coronaviruses, influenza viruses, HIV-1, etc. The external and topical applications of surfactants have been effective in limiting the spread of viruses. While it is well-known that surfactants inactivate virus particles (virions), the mechanism of action of surfactants against enveloped virions has not yet been established. In this work, we have evaluated the surfactant-induced disruption mechanism of a cocktail of enveloped viruses containing particles of mumps, measles, and rubella viruses. We applied the total internal reflection fluorescence microscopy technique to trace the temporal changes in the fluorescence signal from single virions upon the addition of a surfactant solution. We report that surfactants solubilize either the viral lipid membrane, proteins, or both. Ionic surfactants, depending on their charge and interaction type with the viral lipids and proteins, can cause bursting or perforation of the viral envelope, whereas a nonionic surfactant can cause either symmetric expansion or perforation of the viral envelope depending on the surfactant concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.3c05531DOI Listing

Publication Analysis

Top Keywords

enveloped viruses
12
perforation viral
8
viral envelope
8
viruses
6
surfactants
6
disruption mechanisms
4
enveloped
4
mechanisms enveloped
4
viruses ionic
4
ionic nonionic
4

Similar Publications