A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Metabolic and transcriptomic characterization of summer and winter dormancy in the solitary bee, Osmia lignaria. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The solitary bee Osmia lignaria is a native pollinator in North America with growing economic importance. The life cycle of O. lignaria provides a unique opportunity to compare the physiological and molecular mechanisms underlying two ecologically contrasting dormancies within the same species. O. lignaria prepupae become dormant during the summer to avoid high temperatures. Shortly after adult eclosion, they enter a second dormancy and overwinter as diapausing adults. To compare these two dormancies, we measured metabolic rates and gene expression across development as bees initiate, maintain, and terminate both prepupal (summer) and adult (overwintering) dormancies. We observed a moderate temperature-independent decrease in gas exchange during both the prepupal dormancy after cocoon spinning (45 %) and during adult diapause after eclosion (60 %). We sequenced and assembled a high-quality reference genome from a single haploid male bee with a contiguous n50 of 5.5 Mbp to facilitate our transcriptomic analysis. The transcriptomes of dormant prepupae and diapausing adults clustered into distinct groups more closely associated with life stage than dormancy status. Membrane transport, membrane-bound cellular components, oxidoreductase activity, glutathione metabolism, and transcription factor activity increased during adult diapause, relative to prepupal dormancy. Further, the transcriptomes of adults in diapause clustered into two groups, supporting multiple phases of diapause during winter. Late adult diapause was associated with gene expression profiles supporting increased insulin/IGF, juvenile hormone, and ecdysone signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ibmb.2024.104074DOI Listing

Publication Analysis

Top Keywords

adult diapause
12
solitary bee
8
bee osmia
8
osmia lignaria
8
diapausing adults
8
gene expression
8
prepupal dormancy
8
dormancy
5
adult
5
diapause
5

Similar Publications