Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Unlabelled: Oxygen minimum zones in the open ocean are predicted to significantly increase in volume over the coming decades as a result of anthropogenic climatic warming. The resulting reduction in dissolved oxygen (DO) in the pelagic realm is likely to have detrimental impacts on water-breathing organisms, particularly those with higher metabolic rates, such as billfish, tunas, and sharks. However, little is known about how free-living fish respond to low DO environments, and therefore, the effect increasing OMZs will have cannot be predicted reliably. Here, we compare the responses of two active predators (bigeye tuna and yellowfin tuna ) to DO at depth throughout the eastern Pacific Ocean. Using time-series data from 267 tagged tunas (59,910 days) and 3D maps of modelled DO, we find that yellowfin tuna respond to low DO at depth by spending more time in shallower, more oxygenated waters. By contrast, bigeye tuna, which forage at deeper depths well below the thermocline, show fewer changes in their use of the water column. However, we find that bigeye tuna increased the frequency of brief upward vertical excursions they performed by four times when DO at depth was lower, but with no concomitant significant difference in temperature, suggesting that this behaviour is driven in part by the need to re-oxygenate following time spent in hypoxic waters. These findings suggest that increasing OMZs will impact the behaviour of these commercially important species, and it is therefore likely that other water-breathing predators with higher metabolic rates will face similar pressures. A more comprehensive understanding of the effect of shoaling OMZs on pelagic fish vertical habitat use, which may increase their vulnerability to surface fisheries, will be important to obtain if these effects are to be mitigated by future management actions.
Supplementary Information: The online version contains supplementary material available at 10.1007/s00227-023-04366-2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787700 | PMC |
http://dx.doi.org/10.1007/s00227-023-04366-2 | DOI Listing |