The prFMNH-binding chaperone LpdD assists UbiD decarboxylase activation.

J Biol Chem

Manchester Institute of Biotechnology, University of Manchester, Manchester, UK. Electronic address:

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The UbiD enzyme family of prenylated flavin (prFMN)-dependent reversible decarboxylases is near ubiquitously present in microbes. For some UbiD family members, enzyme activation through prFMNH binding and subsequent oxidative maturation of the cofactor readily occurs, both in vivo in a heterologous host and through in vitro reconstitution. However, isolation of the active holo-enzyme has proven intractable for others, notably the canonical Escherichia coli UbiD. We show that E. coli heterologous expression of the small protein LpdD-associated with the UbiD-like gallate decarboxylase LpdC from Lactobacillus plantarum-unexpectedly leads to 3,4-dihydroxybenzoic acid decarboxylation whole-cell activity. This activity was shown to be linked to endogenous E. coli ubiD expression levels. The crystal structure of the purified LpdD reveals a dimeric protein with structural similarity to the eukaryotic heterodimeric proteasome assembly chaperone Pba3/4. Solution studies demonstrate that LpdD protein specifically binds to reduced prFMN species only. The addition of the LpdD-prFMNH complex supports reconstitution and activation of the purified E. coli apo-UbiD in vitro, leading to modest 3,4-dihydroxybenzoic acid decarboxylation. These observations suggest that LpdD acts as a prFMNH-binding chaperone, enabling apo-UbiD activation through enhanced prFMNH incorporation and subsequent oxidative maturation. Hence, while a single highly conserved flavin prenyltransferase UbiX is found associated with UbiD enzymes, our observations suggest considerable diversity in UbiD maturation, ranging from robust autocatalytic to chaperone-mediated processes. Unlocking the full (de)carboxylation scope of the UbiD-enzyme family will thus require more than UbiX coexpression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10865409PMC
http://dx.doi.org/10.1016/j.jbc.2024.105653DOI Listing

Publication Analysis

Top Keywords

prfmnh-binding chaperone
8
subsequent oxidative
8
oxidative maturation
8
34-dihydroxybenzoic acid
8
acid decarboxylation
8
ubid
7
lpdd
4
chaperone lpdd
4
lpdd assists
4
assists ubid
4

Similar Publications

Recent advances in the design of small molecules targeting human ClpP.

Future Med Chem

September 2025

Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.

Human mitochondrial ClpP (hClpP), a pivotal protease regulating mitochondrial protein homeostasis, has emerged as an important target for anticancer drug development. In recent years, significant progress has been made in designing small molecules targeting hClpP, primarily classified into activators and inhibitors. Activators specifically stimulate ClpP proteolytic activity by mimicking the mechanism of its chaperone protein ClpX, with representative compounds, such as imipridone derivatives (ONC201/206/212) and their optimized products (ZK53, 7k, etc.

View Article and Find Full Text PDF

Adenosylcobalamin-dependent ethanolamine ammonia-lyase (EAL) undergoes irreversible inactivation when incubated in the absence of substrate or in the presence of certain substrates or pseudosubstrates. We have previously identified Escherichia coli EutA as an EAL-reactivase (or reactivating factor). Herein, untagged and tagged EutAs were purified to homogeneity.

View Article and Find Full Text PDF

Shiga toxin (Stx) is a virulence factor produced by serotype 1 and Stx-producing (STEC). It causes severe renal damage, leading to hemolytic uremic syndrome (HUS). The main target organ of Stx, the kidney, plays a role in maintaining water homeostasis in the body by increasing an osmotic gradient from the cortex to the medulla.

View Article and Find Full Text PDF

Optimizing protein folding in prokaryotes: Strategies to enhance soluble expression of recombinant proteins.

Bioresour Technol

September 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Fo

Recombinant proteins have been widely applied in the food, biomedical, and scientific fields. Prokaryotic expression systems are preferred platforms for recombinant protein production due to their rapid growth and high protein yields. Nevertheless, disparities between recombinant expression environment and native physiological conditions frequently result in protein misfolding, leading to aggregation into non-functional inclusion bodies or proteolytic degradation.

View Article and Find Full Text PDF

Introduction: Increased attention is being paid to sensitive but necessary medical examinations, but the literature on guidelines for the anorectal exam remains limited. We performed a qualitative investigation of the patient experience to identify best practice recommendations from the patient's perspective for practitioners conducting the anorectal exam.

Methods: We conducted semi-structured interviews with patients aged 18 and older who had received at least one anorectal examination at the University of Chicago Medicine, Colon & Rectal Surgery clinic.

View Article and Find Full Text PDF