98%
921
2 minutes
20
Background: Rapid regeneration of the residual liver is one of the key determinants of successful partial hepatectomy (PHx). At present, there is a lack of recognized safe, effective, and stable drugs to promote liver regeneration. It has been reported that vagus nerve signaling is beneficial to liver regeneration, but the potential mechanism at play here is not fully understood.
Aim: To explore the effect and mechanism of hepatic vagus nerve in liver regeneration after PHx.
Methods: A PHx plus hepatic vagotomy (Hv) mouse model was established. The effect of Hv on liver regeneration after PHx was determined by comparing the liver regeneration levels of the PHx-Hv group and the PHx-sham group mice. In order to further investigate the role of interleukin (IL)-22 in liver regeneration inhibition mediated by Hv, the levels of IL-22 in the PHx-Hv group and the PHx-sham group was measured. The degree of liver injury in the PHx-Hv group and the PHx-sham group mice was detected to determine the role of the hepatic vagus nerve in liver injury after PHx.
Results: Compared to control-group mice, Hv mice showed severe liver injury and weakened liver regeneration after PHx. Further research found that Hv downregulates the production of IL-22 induced by PHx and blocks activation of the signal transducer and activator of transcription 3 (STAT3) pathway then reduces the expression of various mitogenic and anti-apoptotic proteins after PHx. Exogenous IL-22 reverses the inhibition of liver regeneration induced by Hv and alleviates liver injury, while treatment with IL-22 binding protein (an inhibitor of IL-22 signaling) reduce the concentration of IL-22 induced by PHx, inhibits the activation of the STAT3 signaling pathway in the liver after PHx, thereby hindering liver regeneration and aggravating liver injury in PHx-sham mice.
Conclusion: Hv attenuates liver regeneration after hepatectomy, and the mechanism may be related to the fact that Hv downregulates the production of IL-22, then blocks activation of the STAT3 pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10784834 | PMC |
http://dx.doi.org/10.4240/wjgs.v15.i12.2866 | DOI Listing |
Nat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFJCI Insight
September 2025
Alice and Y. T. Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics.
Methylmalonic acidemia (MMA) is a severe metabolic disorder affecting multiple organs because of a distal block in branched-chain amino acid (BCAA) catabolism. Standard of care is limited to protein restriction and supportive care during metabolic decompensation. Severe cases require liver/kidney transplantation, and there is a clear need for better therapy.
View Article and Find Full Text PDFAnn Gastroenterol Surg
September 2025
Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima University Hiroshima Japan.
Background: Liver fibrosis is a key factor in the progression of chronic liver diseases, including viral hepatitis and metabolic dysfunction-associated steatotic liver disease. If untreated, fibrosis can progress to cirrhosis, increasing the risk of liver cancer or failure. This study evaluates the Fibrosis (FIB)-3 index, a novel marker free from age-related biases, for predicting liver fibrosis and 5-year outcomes in hepatocellular carcinoma (HCC) patients undergoing hepatectomy.
View Article and Find Full Text PDFAdv Pharm Bull
July 2025
Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran.
Liver fibrosis (LF) is a pathological condition resulting from a chronic inflammatory response to multiple etiological factors, including viral infections, excessive alcohol consumption, and metabolic disorders. The important role of macrophages in this process, especially the M2 subtype, has attracted attention as a potential target for macrophage-based immunotherapy. M2 macrophages have anti-inflammatory and reparative properties that enable them to modulate the immune response and facilitate repairing damaged tissues.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
September 2025
INSERM U955 , Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU A-TVB France, Creteil, France;
Emphysema is characterized by chronic alveolar destruction. Lipofibroblasts (LIF) are crucial in the stem cell niche surrounding alveolar type II (AT2) cells and may contribute to alveolar regeneration. We aim to determine whether emphysema is associated with LIF reduction and whether Sterol regulatory binding protein (SREBP) activation promotes LIF differentiation and fibroblast stem cell niche properties.
View Article and Find Full Text PDF