98%
921
2 minutes
20
Purpose: Inherited retinal disease (IRD) is a leading cause of blindness. Recent advances in gene-directed therapies highlight the importance of understanding the genetic basis of these disorders. This study details the molecular spectrum in a large United Kingdom (UK) IRD patient cohort.
Design: Retrospective study of electronic patient records.
Participants: Patients with IRD who attended the Genetics Service at Moorfields Eye Hospital between 2003 and July 2020, in whom a molecular diagnosis was identified.
Methods: Genetic testing was undertaken via a combination of single-gene testing, gene panel testing, whole exome sequencing, and more recently, whole genome sequencing. Likely disease-causing variants were identified from entries within the genetics module of the hospital electronic patient record (OpenEyes Electronic Medical Record). Analysis was restricted to only genes listed in the Genomics England PanelApp R32 Retinal Disorders panel (version 3.24), which includes 412 genes associated with IRD. Manual curation ensured consistent variant annotation and included only plausible disease-associated variants.
Main Outcome Measures: Detailed analysis was performed for variants in the 5 most frequent genes (ABCA4, USH2A, RPGR, PRPH2, and BEST1), as well as for the most common variants encountered in the IRD study cohort.
Results: We identified 4415 individuals from 3953 families with molecularly diagnosed IRD (variants in 166 genes). Of the families, 42.7% had variants in 1 of the 5 most common IRD genes. Complex disease alleles contributed to disease in 16.9% of affected families with ABCA4-associated retinopathy. USH2A exon 13 variants were identified in 43% of affected individuals with USH2A-associated IRD. Of the RPGR variants, 71% were clustered in the ORF15 region. PRPH2 and BEST1 variants were associated with a range of dominant and recessive IRD phenotypes. Of the 20 most prevalent variants identified, 5 were not in the most common genes; these included founder variants in CNGB3, BBS1, TIMP3, EFEMP1, and RP1.
Conclusions: We describe the most common pathogenic IRD alleles in a large single-center multiethnic UK cohort and the burden of disease, in terms of families affected, attributable to these variants. Our findings will inform IRD diagnoses in future patients and help delineate the cohort of patients eligible for gene-directed therapies under development.
Financial Disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932969 | PMC |
http://dx.doi.org/10.1016/j.oret.2024.01.012 | DOI Listing |
BMC Glob Public Health
September 2025
Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme (KWTRP), Kilifi, Kenya.
Background: Between November 2023 and March 2024, coastal Kenya experienced another wave of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections detected through our continued genomic surveillance. Herein, we report the clinical and genomic epidemiology of SARS-CoV-2 infections from 179 individuals (a total of 185 positive samples) residing in the Kilifi Health and Demographic Surveillance System (KHDSS) area (~ 900 km).
Methods: We analyzed genetic, clinical, and epidemiological data from SARS-CoV-2 positive cases across pediatric inpatient, health facility outpatient, and homestead community surveillance platforms.
Genome Biol
September 2025
Center for Genomic Medicine, Cardiovascular Research Center, , Massachusetts General Hospital Simches Research Center, 185 Cambridge Street, CPZN 5.238,, Boston, MA, 02114, USA.
Background: Rare genetic variation provided by whole genome sequence datasets has been relatively less explored for its contributions to human traits. Meta-analysis of sequencing data offers advantages by integrating larger sample sizes from diverse cohorts, thereby increasing the likelihood of discovering novel insights into complex traits. Furthermore, emerging methods in genome-wide rare variant association testing further improve power and interpretability.
View Article and Find Full Text PDFTheor Appl Genet
September 2025
Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands.
Potato bolters are caused by excision of a transposon from the StCDF1.3 allele, resulting in a somatic mutant with late maturity. Somatic mutations during vegetative propagation can lead to novel genotypes, known as sports.
View Article and Find Full Text PDFSci China Life Sci
September 2025
MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
Tomato brown rugose fruit virus (ToBRFV) overcomes all known tomato resistance genes, including the durable Tm-2, posing a serious threat to global tomato production. Here, we employed in vitro random mutagenesis to evolve the Tm-2 leucine-rich repeat (LRR) domain and screened ∼8,000 variants for gain-of-function mutants capable of recognizing the ToBRFV movement protein (MP) and triggering hypersensitive cell death. We identified five such mutants.
View Article and Find Full Text PDFCalcif Tissue Int
September 2025
FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141, Florence, Italy.
X-linked hypophosphatemia (XLH) is a rare and progressive disease, due to inactivating mutations in the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene. These pathogenic variants result in elevated circulating levels of fibroblast growth factor 23 (FGF23), responsible for the main clinical manifestations of XLH, such as hypophosphatemia, skeletal deformities, and mineralization defects. However, XLH also involves muscular disorders (muscle weakness, pain, reduced muscle density, peak strength, and power).
View Article and Find Full Text PDF