A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Identifying the latent relationships between factors associated with traffic crashes through graphical models. | LitMetric

Identifying the latent relationships between factors associated with traffic crashes through graphical models.

Accid Anal Prev

Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA.

Published: March 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Traffic safety field has been oriented toward finding the relationships between crash outcomes and predictor variables to understand crash phenomena and/or predict future crashes. In the literature, the main framework established for this purpose is based on constructing a modelling equation in which crash outcome (e.g., frequencies) is examined in relation to explanatory variables chosen based on the problem at hand. Despite the importance and success of this approach, there are two issues that are generally not discussed: 1) the latent relationships between factors associated with crashes are oftentimes not the focus of analysis or not observed; and 2) there are not many tools to make informed decisions on which variables might have an impact on the crash outcome and should be included in a safety model, particularly when observations are limited. To address these issues, this paper proposes the use of graphical models, namely a Markov random field (MRF) modelling, Bayesian network modelling, and a graphical XGBoost approach, to disclose relationship topologies of explanatory variables leading to fatal and incapacitating injury pedestrian crashes. The application of graph learning models in traffic safety has a high potential because they are not only useful to understand the mechanism behind the crash occurrence but also can assist in devising accurate and reliable prevention measures by identifying the true variable structure and essential factors jointly acting towards crash occurrence, similar to a pathological examination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aap.2024.107470DOI Listing

Publication Analysis

Top Keywords

latent relationships
8
relationships factors
8
factors associated
8
graphical models
8
models traffic
8
traffic safety
8
crash outcome
8
explanatory variables
8
crash occurrence
8
crash
6

Similar Publications