A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Feasibility of Encord Artificial Intelligence Annotation of Arterial Duplex Ultrasound Images. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

DUS measurements for popliteal artery aneurysms (PAAs) specifically can be time-consuming, error-prone, and operator-dependent. To eliminate this subjectivity and provide efficient segmentation, we applied artificial intelligence (AI) to accurately delineate inner and outer lumen on DUS. DUS images were selected from a cohort of patients with PAAs from a multi-institutional platform. Encord is an easy-to-use, readily available online AI platform that was used to segment both the inner lumen and outer lumen of the PAA on DUS images. A model trained on 20 images and tested on 80 images had a mean Average Precision of 0.85 for the outer polygon and 0.23 for the inner polygon. The outer polygon had a higher recall score than precision score at 0.90 and 0.85, respectively. The inner polygon had a score of 0.25 for both precision and recall. The outer polygon false-negative rate was the lowest in images with the least amount of blur. This study demonstrates the feasibility of using the widely available Encord AI platform to identify standard features of PAAs that are critical for operative decision making.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795888PMC
http://dx.doi.org/10.3390/diagnostics14010046DOI Listing

Publication Analysis

Top Keywords

outer polygon
12
feasibility encord
8
artificial intelligence
8
outer lumen
8
dus images
8
inner polygon
8
images
6
outer
5
polygon
5
encord artificial
4

Similar Publications