Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Purpose To develop an automated triage tool to predict neurosurgical intervention for patients with traumatic brain injury (TBI). Materials and Methods A provincial trauma registry was reviewed to retrospectively identify patients with TBI from 2005 to 2022 treated at a specialized Canadian trauma center. Model training, validation, and testing were performed using head CT scans with binary reference standard patient-level labels corresponding to whether the patient received neurosurgical intervention. Performance and accuracy of the model, the Automated Surgical Intervention Support Tool for TBI (ASIST-TBI), were also assessed using a held-out consecutive test set of all patients with TBI presenting to the center between March 2021 and September 2022. Results Head CT scans from 2806 patients with TBI (mean age, 57 years ± 22 [SD]; 1955 [70%] men) were acquired between 2005 and 2021 and used for training, validation, and testing. Consecutive scans from an additional 612 patients (mean age, 61 years ± 22; 443 [72%] men) were used to assess the performance of ASIST-TBI. There was accurate prediction of neurosurgical intervention with an area under the receiver operating characteristic curve (AUC) of 0.92 (95% CI: 0.88, 0.94), accuracy of 87% (491 of 562), sensitivity of 87% (196 of 225), and specificity of 88% (295 of 337) on the test dataset. Performance on the held-out test dataset remained robust with an AUC of 0.89 (95% CI: 0.85, 0.91), accuracy of 84% (517 of 612), sensitivity of 85% (199 of 235), and specificity of 84% (318 of 377). Conclusion A novel deep learning model was developed that could accurately predict the requirement for neurosurgical intervention using acute TBI CT scans. CT, Brain/Brain Stem, Surgery, Trauma, Prognosis, Classification, Application Domain, Traumatic Brain Injury, Triage, Machine Learning, Decision Support © RSNA, 2024 See also commentary by Haller in this issue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982820 | PMC |
http://dx.doi.org/10.1148/ryai.230088 | DOI Listing |