98%
921
2 minutes
20
Objective: Delirium is commonly reported from the inpatients with Coronavirus disease 2019 (COVID-19) infection. As delirium is closely associated with adverse clinical outcomes, prediction and prevention of delirium is critical. We developed a machine learning (ML) model to predict delirium in hospitalized patients with COVID-19 and to identify modifiable factors to prevent delirium.
Methods: The data set (n = 878) from four medical centers was constructed. Total of 78 predictors were included such as demographic characteristics, vital signs, laboratory results and medication, and the primary outcome was delirium occurrence during hospitalization. For analysis, the extreme gradient boosting (XGBoost) algorithm was applied, and the most influential factors were selected by recursive feature elimination. Among the indicators of performance for ML model, the area under the curve of the receiver operating characteristic (AUROC) curve was selected as the evaluation metric.
Results: Regarding the performance of developed delirium prediction model, the accuracy, precision, recall, F1 score, and the AUROC were calculated (0.944, 0.581, 0.421, 0.485, 0.873, respectively). The influential factors of delirium in this model included were mechanical ventilation, medication (antipsychotics, sedatives, ambroxol, piperacillin/tazobactam, acetaminophen, ceftriaxone, and propacetamol), and sodium ion concentration (all < 0.05).
Conclusions: We developed and internally validated an ML model to predict delirium in COVID-19 inpatients. The model identified modifiable factors associated with the development of delirium and could be clinically useful for the prediction and prevention of delirium in COVID-19 inpatients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10771056 | PMC |
http://dx.doi.org/10.1177/20552076231223811 | DOI Listing |
Knee Surg Relat Res
September 2025
Florida Orthopaedic Institute, Gainesville, FL, 32607, USA.
Background: A clear understanding of minimal clinically important difference (MCID) and substantial clinical benefit (SCB) is essential for effectively implementing patient-reported outcome measurements (PROMs) as a performance measure for total knee arthroplasty (TKA). Since not achieving MCID and SCB may reflect suboptimal surgical benefit, the primary aim of this study was to use machine learning to predict patients who may not achieve the threshold-based outcomes (i.e.
View Article and Find Full Text PDFJ Orthop Res
September 2025
Department of Kinesiology, College of Health Sciences, University of Rhode Island, Kingston, Rhode Island, USA.
Arthroplasty surgery is a common and successful end-stage intervention for advanced osteoarthritis. Yet, postoperative outcomes vary significantly among patients, leading to a plethora of measures and associated measurement approaches to monitor patient outcomes. Traditional approaches rely heavily on patient-reported outcome measures (PROMs), which are widely used, but often lack sensitivity to detect function changes (e.
View Article and Find Full Text PDFBehav Res Methods
September 2025
Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Cybernetics, Prague, Czech Republic.
Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There has been a rapid development of human pose estimation methods in computer vision, thanks to advances in deep learning and machine learning. However, these methods are trained on datasets that feature adults in different contexts.
View Article and Find Full Text PDFGeroscience
September 2025
Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
This study aims to investigate the predictive value of combined phenotypic age and phenotypic age acceleration (PhenoAgeAccel) for benign prostatic hyperplasia (BPH) and develop a machine learning-based risk prediction model to inform precision prevention and clinical management strategies. The study analyzed data from 784 male participants in the US National Health and Nutrition Examination Survey (NHANES, 2001-2008). Phenotypic age was derived from chronological age and nine serum biomarkers.
View Article and Find Full Text PDFBariatric surgery is an effective treatment for morbid obesity, but patient outcomes differ greatly because of a variety of phenotypes, comorbidities, and postoperative adherence. In bariatric care, artificial intelligence (AI) and machine learning (ML) are becoming revolutionary tools because traditional predictive models based on BMI and demographic variables are unable to account for these complexities. To put it simply, AI is a branch of computer science that enables machines to perform tasks that typically require human intelligence.
View Article and Find Full Text PDF