A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A highly efficient cell culture method using oxygen-permeable PDMS-based honeycomb microwells produces functional liver organoids from human induced pluripotent stem cell-derived carboxypeptidase M liver progenitor cells. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent advancements in bioengineering have introduced potential alternatives to liver transplantation via the development of self-assembled liver organoids, derived from human-induced pluripotent stem cells (hiPSCs). However, the limited maturity of the tissue makes it challenging to implement this technology on a large scale in clinical settings. In this study, we developed a highly efficient method for generating functional liver organoids from hiPSC-derived carboxypeptidase M liver progenitor cells (CPM+ LPCs), using a microwell structure, and enhanced maturation through direct oxygenation in oxygen-permeable culture plates. We compared the morphology, gene expression profile, and function of the liver organoid with those of cells cultured under conventional conditions using either monolayer or spheroid culture systems. Our results revealed that liver organoids generated using polydimethylsiloxane-based honeycomb microwells significantly exhibited enhanced albumin secretion, hepatic marker expression, and cytochrome P450-mediated metabolism. Additionally, the oxygenated organoids consisted of both hepatocytes and cholangiocytes, which showed increased expression of bile transporter-related genes as well as enhanced bile transport function. Oxygen-permeable polydimethylsiloxane membranes may offer an efficient approach to generating highly mature liver organoids consisting of diverse cell populations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.28640DOI Listing

Publication Analysis

Top Keywords

liver organoids
20
liver
9
highly efficient
8
honeycomb microwells
8
functional liver
8
pluripotent stem
8
carboxypeptidase liver
8
liver progenitor
8
progenitor cells
8
organoids
6

Similar Publications