A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Multifunctional self-healing hydrogels via nanoengineering of colloidal and polymeric cellulose. | LitMetric

Multifunctional self-healing hydrogels via nanoengineering of colloidal and polymeric cellulose.

Int J Biol Macromol

Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada; Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, QC H3A 2A7, Canada; Quebec Centre for Advanced Materials (QCAM), 3420 University Street, Montreal, QC H3A 2A7, Ca

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The unique features of self-healing hydrogels hold great potential for biomedical applications including injectable hydrogels for cancer treatment, procedures for tumor removal or resection. However, the fabrication of durable and multifunctional self-healing hydrogels composed of biocompatible, green building blocks via versatile synthetic methodology continues to pose a significant challenge. Here, we engineered dialdehyde cellulose (DAC, as a macromolecular bio-crosslinker), and electrosterically stabilized nanocrystalline cellulose (ENCC, as a ligand-targeted drug carrier) to facilitate a strategy for the construction of self-healing hydrogels. Benefiting from its high carboxyl group density, ENCC was functionalized with folic acid (FA) using a non-toxic DMTMM coupling agent and loaded with doxorubicin (DOX, a model drug) through electrostatic interactions. A natural self-healing hydrogel was prepared from carboxymethyl chitosan (CCTS) and DAC mixed with DOX-loaded FA-ENCC using dynamic Schiff-base and hydrogen linkages. A combination of active supramolecular and vital covalent junctions led to a soft (storage modulus ∼500 Pa) and durable material, with rapid (< 5 min) reconstruction of molecular structure from fractured and injected to intact forms. The DAC-CCTS hydrogel showed an appreciable loading capacity of ∼5 mg g. Biocompatibility of the hydrogels was evaluated using cell viability and metabolic activity assays, showing lower metabolic activity due to sustained release of its cargo. These materials offer a versatile, sustainable, and green platform for the efficient construction of hydrogels, based on macro- and nano-engineered cellulose, the most abundant and easily accessible biopolymer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.129181DOI Listing

Publication Analysis

Top Keywords

self-healing hydrogels
16
multifunctional self-healing
8
metabolic activity
8
hydrogels
7
hydrogels nanoengineering
4
nanoengineering colloidal
4
colloidal polymeric
4
cellulose
4
polymeric cellulose
4
cellulose unique
4

Similar Publications