Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The survival and physiological functions of polar marine organisms are impacted by global climate changes. Investigation of the adaptation mechanisms underlying biomineralization in polar organisms at low temperatures is important for understanding mineralized organismal sensitivity to climate change. Here, we performed electron probe analysis on the shields of Antarctic polychaete Sternaspis sendalli and Arctic polychaete Sternaspis buzhinskajae (Sternaspidae), and sequenced the transcriptomes of the tissues surrounding shields to examine biomineral characteristics and adaptive mechanisms in persistently cold environments. Compared to the temperate relative species, the relative abundance of iron, phosphorus, calcium, magnesium, nitrogen, sulfur and silicon in two polar sternaspid shields was similar to Sternaspis chinensis. However, the diversity and expression levels of biomineralization-related shell matrix proteins differed between the polar and temperate species, suggesting distinct molecular mechanisms underlying shield formation in cold environments. Tubulin and cyclophilin were upregulated compared to the temperate species. Furthermore, 42 positively selected genes were identified in Antarctic S. sendalli, with functions in cytoskeletal structure, DNA repair, immunity, transcription, translation, protein synthesis, and lipid metabolism. Highly expressed genes in both polar species were associated with cytoskeleton, macromolecular complexes and cellular component biosynthesis. Overall, this study reveals conserved elemental composition yet distinct biomineralization processes in the shields of polar sternaspids. The unique expression of biomineralization related genes and other cold-adaptation related genes provide molecular insights into biomineralization in cold marine environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbd.2023.101187 | DOI Listing |