98%
921
2 minutes
20
Background: It is of great clinical significance to find out the ideal tumor biomarkers and therapeutic targets to improve the prognosis of patients with osteosarcoma (OS). Oxidative stress (OXS) can directly target intracellular macromolecules and exhibit dual effects of tumor promotion and suppression.
Methods: OXS-related genes (OXRGs) were extracted from public databases, including TARGET and GEO. Univariate Cox regression analysis, Random Survival Forest algorithm, and LASSO regression were performed to identify prognostic genes and establish the OXS-signature. The efficacy of the OXS-signature was further evaluated by Kaplan-Meier curves and timeROC package. Evaluation of immunological characteristics was achieved based on ESTIMATE algorithm and ssGSEA. Submap algorithm was used to explore the response to anti-PD1 and anti-CTLA4 therapy for OS. Drug response prediction was conducted by using pRRophetic package. The expression values of related genes in the OXS-signature were detected with PCR assays.
Results: Two OXS-clusters were identified for OS, with remarkable differences of clusters presented in prognosis. Kyoto Encyclopedia of Genes Genomes (KEGG) analysis showed that differentially expressed genes (DEGs) between the OXS-clusters were significantly enriched in several immune-related pathways. Patients with lower OS-scores attained better clinical outcomes, and presented more sensitivity to ICB therapy. By contrast, OS patients with higher OS-scores revealed more sensitivity to certain drugs. Furthermore, critical genes, RHBDL2 and CGREF1 from the model, were significantly higher expressed in OS cell lines.
Conclusions: Our study identified the clusters and signature based on OXS, which would lay the foundation for molecular experimental research, disease prevention and treatment of OS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10781490 | PMC |
http://dx.doi.org/10.18632/aging.205354 | DOI Listing |
J Phys Chem Lett
September 2025
Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States.
Carbon dots (CDs) represent a new class of nontoxic and sustainable nanomaterials with increasing applications. Among them, bright and large Stokes-shift CDs are highly desirable for display and imaging, yet the emission mechanisms remain unclear. We obtained structural signatures for the recently engineered green and red CDs by ground-state femtosecond stimulated Raman spectroscopy (FSRS), then synthesized orange CDs with similar size but much higher nitrogen dopants than red CDs.
View Article and Find Full Text PDFEur Child Adolesc Psychiatry
September 2025
Mental Health Unit, Virgen del Rocio University Hospital, Seville, Spain.
The COVID-19 pandemic brought unprecedented global challenges. Amid the crisis, the potential impact of COVID-19 exposure on the neurodevelopment of offspring born to infected mothers emerged as a critical concern. This is a prospective cohort study of pregnant women and their offspring enrolled in the Signature project at Hospital Universitario Virgen del Rocio in Seville, Spain, between 01/01/2024 and 08/31/2022.
View Article and Find Full Text PDFElife
September 2025
Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, United States.
The microglial surface protein Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) plays a critical role in mediating brain homeostasis and inflammatory responses in Alzheimer's disease (AD). The soluble form of TREM2 (sTREM2) exhibits neuroprotective effects in AD, though the underlying mechanisms remain elusive. Moreover, differences in ligand binding between TREM2 and sTREM2, which have major implications for their roles in AD pathology, remain unexplained.
View Article and Find Full Text PDFBiochem Biophys Rep
December 2025
Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, 112, Taiwan.
Purpose: This study aimed to conduct functional proteomics across breast cancer subtypes with bioinformatics analyses.
Methods: Candidate proteins were identified using nanoscale liquid chromatography with tandem mass spectrometry (NanoLC-MS/MS) from core needle biopsy samples of early stage (0-III) breast cancers, followed by external validation with public domain gene-expression datasets (TCGA TARGET GTEx and TCGA BRCA).
Results: Seventeen proteins demonstrated significantly differential expression and protein-protein interaction (PPI) found the strong networks including COL2A1, COL11A1, COL6A1, COL6A2, THBS1 and LUM.
NEJM AI
September 2025
Department of Bioengineering, Stanford University, Stanford, CA.
Background: Assessing human movement is essential for diagnosing and monitoring movement-related conditions like neuromuscular disorders. Timed function tests (TFTs) are among the most widespread types of assessments due to their speed and simplicity, but they cannot capture disease-specific movement patterns. Conversely, biomechanical analysis can produce sensitive disease-specific biomarkers, but it is traditionally confined to laboratory settings.
View Article and Find Full Text PDF