A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Recalibrating single-study effect sizes using hierarchical Bayesian models. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: There are growing concerns about commonly inflated effect sizes in small neuroimaging studies, yet no study has addressed recalibrating effect size estimates for small samples. To tackle this issue, we propose a hierarchical Bayesian model to adjust the magnitude of single-study effect sizes while incorporating a tailored estimation of sampling variance.

Methods: We estimated the effect sizes of case-control differences on brain structural features between individuals who were dependent on alcohol, nicotine, cocaine, methamphetamine, or cannabis and non-dependent participants for 21 individual studies (Total cases: 903; Total controls: 996). Then, the study-specific effect sizes were modeled using a hierarchical Bayesian approach in which the parameters of the study-specific effect size distributions were sampled from a higher-order overarching distribution. The posterior distribution of the overarching and study-specific parameters was approximated using the Gibbs sampling method.

Results: The results showed shrinkage of the posterior distribution of the study-specific estimates toward the overarching estimates given the original effect sizes observed in individual studies. Differences between the original effect sizes (i.e., Cohen's d) and the point estimate of the posterior distribution ranged from 0 to 0.97. The magnitude of adjustment was negatively correlated with the sample size (r = -0.27, < 0.001) and positively correlated with empirically estimated sampling variance (r = 0.40, < 0.001), suggesting studies with smaller samples and larger sampling variance tended to have greater adjustments.

Discussion: Our findings demonstrate the utility of the hierarchical Bayesian model in recalibrating single-study effect sizes using information from similar studies. This suggests that Bayesian utilization of existing knowledge can be an effective alternative approach to improve the effect size estimation in individual studies, particularly for those with smaller samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10764546PMC
http://dx.doi.org/10.3389/fnimg.2023.1138193DOI Listing

Publication Analysis

Top Keywords

hierarchical bayesian
16
single-study sizes
12
individual studies
12
posterior distribution
12
recalibrating single-study
8
sizes
8
bayesian model
8
original sizes
8
sampling variance
8
studies smaller
8

Similar Publications