Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The significance of interfacial thermal resistance in the thermal conductivity of nanofluids is not well understood, in part because of the absence of measurements of this quantity. Here, we study the interfacial thermal resistance for metal-oil nanofluids of interest as heat transfer fluids for concentrating solar power, using density functional theory and molecular dynamics simulations. Insights on the role of chemical interactions in determining the interfacial thermal resistance are revealed. The results presented here showcase a general picture in which the stronger the chemical interactions between species at the interface, the lower the associated interfacial thermal resistance. The implications toward nanofluid design are discussed. We show that, for this important family of metal-oil nanofluids, the interfacial thermal resistance values are low enough so that it is possible to afford a reduction in particle size, minimizing stability and rheological issues while still offering enhancement in the effective thermal conductivity with respect to the base fluid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0177616 | DOI Listing |