Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Supercritical fluids (SCFs) can be found in a variety of environmental and industrial processes. They exhibit an anomalous thermodynamic behavior, which originates from their fluctuating heterogeneous micro-structure. Characterizing the dynamics of these fluids at high temperature and high pressure with nanometer spatial and picosecond temporal resolution has been very challenging. The advent of hard x-ray free electron lasers has enabled the development of novel multi-pulse ultrafast x-ray scattering techniques, such as x-ray photon correlation spectroscopy (XPCS) and x-ray pump x-ray probe (XPXP). These techniques offer new opportunities for resolving the ultrafast microscopic behavior in SCFs at unprecedented spatiotemporal resolution, unraveling the dynamics of their micro-structure. However, harnessing these capabilities requires a bespoke high-pressure and high-temperature sample system that is optimized to maximize signal intensity and address instrument-specific challenges, such as drift in beamline components, x-ray scattering background, and multi-x-ray-beam overlap. We present a pressure cell compatible with a wide range of SCFs with built-in optical access for XPCS and XPXP and discuss critical aspects of the pressure cell design, with a particular focus on the design optimization for XPCS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10771079PMC
http://dx.doi.org/10.1063/5.0158497DOI Listing

Publication Analysis

Top Keywords

x-ray scattering
12
supercritical fluids
8
pressure cell
8
x-ray
7
versatile pressure-cell
4
pressure-cell design
4
design studying
4
studying ultrafast
4
ultrafast molecular-dynamics
4
molecular-dynamics supercritical
4

Similar Publications

Objective: The objective of this work is to investigate different sunscreens and Viscogel group organoclays for the preparation of new intercalated sunscreens to improve the effectiveness and safety in photoprotection using new approach methodology (NAMs).

Methods: For this study, we examined Diethylamino hydroxybenzoyl hexyl benzoate (DHHB), octyl methoxycinnamate (OMC), Bemotrizinol (BEMT) and Viscogel S4®, S7®, and B8® using a set of Saccharomyces cerevisiae mutant strains that are sensitive to UVA, UVB and Solar Simulated Light (SSL) to evaluate their photoprotective and mutagenic potential. Additionally, we developed delaminated nanocomposites by chemical intercalation reactions followed by ultrasonic treatment to enhance clay exfoliation.

View Article and Find Full Text PDF

Observing differential spin currents by resonant inelastic X-ray scattering.

Nature

September 2025

National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA.

Controlling spin currents, that is, the flow of spin angular momentum, in small magnetic devices, is the principal objective of spin electronics, a main contender for future energy-efficient information technologies. A pure spin current has never been measured directly because the associated electric stray fields and/or shifts in the non-equilibrium spin-dependent distribution functions are too small for conventional experimental detection methods optimized for charge transport. Here we report that resonant inelastic X-ray scattering (RIXS) can bridge this gap by measuring the spin current carried by magnons-the quanta of the spin wave excitations of the magnetic order-in the presence of temperature gradients across a magnetic insulator.

View Article and Find Full Text PDF

Using the stable synthetic analogue 3-aza-dehydroxylysyl-phosphatidylglycerol (3adLPG), the putative role of native staphylococcal LPG in inhibiting the antibiotic daptomycin from binding to its target phosphatidylglycerol (PG), was investigated with respect to interfacial interactions between these lipids, daptomycin, and calcium ions. The influence of lipid monolayer/bilayer composition and interfacial ion concentrations upon the structure and integrity of model membranes were probed after daptomycin challenge using a combination of surface x-ray scattering techniques and fluorescence assays. In models representing the membrane composition of the daptomycin susceptible phenotype consisting of PG/3adLPG in a 7:3 M ratio, calcium ions drive the formation of two separate phases; Ca cross-linked PG/PG pairs and PG/3adLPG ion pairs.

View Article and Find Full Text PDF

Magnon-phonon hybridization in ordered materials is a crucial phenomenon with significant implications for spintronics, magnonics, and quantum materials research. We present direct experimental evidence and theoretical insights into magnon-phonon coupling in Mn_{3}Ge, a kagome antiferromagnet with noncollinear spin order. Using inelastic x-ray scattering and ab initio modeling, we uncover strong hybridization between planar spin fluctuations and transverse optical phonons, resulting in a large hybridization gap of ∼2  meV.

View Article and Find Full Text PDF

Imaging Valence Electron Rearrangement in a Chemical Reaction Using Hard X-Ray Scattering.

Phys Rev Lett

August 2025

Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.

We have observed the signatures of valence electron rearrangement in photoexcited ammonia using ultrafast hard x-ray scattering. Time-resolved x-ray scattering is a powerful tool for imaging structural dynamics in molecules because of the strong scattering from the core electrons localized near each nucleus. Such core-electron contributions generally dominate the differential scattering signal, masking any signatures of rearrangement in the chemically important valence electrons.

View Article and Find Full Text PDF