98%
921
2 minutes
20
Modern lean premixed combustors are operated in ultra-lean mode to conform to strict emission norms. However, this causes the combustors to become prone to lean blowout (LBO). Online monitoring of combustion dynamics may help to avoid LBO and help the combustor run more safely and reliably. Previous studies have suggested various techniques to early predict LBO in single-burner combustors. In contrast, early detection of LBO in multi-burner combustors has been little explored to date. Recent studies have discovered significantly different combustion dynamics between multi-burner combustors and single-burner combustors. In the present paper, we show that some well-established early LBO detection techniques suitable for single-burner combustor are less effective in early detecting LBO in multi-burner combustors. To resolve this, we propose a novel tool, topological data analysis (TDA), for real-time LBO prediction in a wide range of combustor configurations. We find that the TDA metrics are computationally cheap and follow monotonic trends during the transition to LBO. This indicates that the TDA metrics can be used to fine-tune the LBO safety margin, which is a desirable feature from practical implementation point of view. Furthermore, we show that the sublevel set TDA metrics show approximately monotonic changes during the transition to LBO even with low sampling-rate signals. Sublevel set TDA is computationally inexpensive and does not require phase-space embedding. Therefore, TDA can potentially be used for real-time monitoring of combustor dynamics with simple, low-cost, and low sampling-rate sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0156500 | DOI Listing |
Chaos
January 2024
Department of Mechanical Engineering, Jadavpur University, Kolkata 700032, India.
Modern lean premixed combustors are operated in ultra-lean mode to conform to strict emission norms. However, this causes the combustors to become prone to lean blowout (LBO). Online monitoring of combustion dynamics may help to avoid LBO and help the combustor run more safely and reliably.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
July 2009
Defense Security Systems Technology, The Swedish Defense Research Agency-FOI, 147 25 Tumba, Stockholm, Sweden.
Predictive modelling of turbulent combustion is important for the development of air-breathing engines, internal combustion engines, furnaces and for power generation. Significant advances in modelling non-reactive turbulent flows are now possible with the development of large eddy simulation (LES), in which the large energetic scales of the flow are resolved on the grid while modelling the effects of the small scales. Here, we discuss the use of combustion LES in predictive modelling of propulsion applications such as gas turbine, ramjet and scramjet engines.
View Article and Find Full Text PDF