Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

R loops are RNA-DNA hybrid containing structures involved in diverse cellular processes, including DNA double-strand break (DSB) repair. R loop homeostasis involving the formation and resolution of R loops is critical for DSB repair, and its dysregulation leads to genome instability. Here we show that the HELZ helicase promotes R loop resolution to facilitate DSB repair by homologous recombination (HR). HELZ depletion causes hypersensitivity to DSB-inducing agents, and HELZ localizes and binds to DSBs. HELZ depletion further leads to genomic instability in a R loop dependent manner and the accumulation of R loops globally and at DSBs. HELZ binds to R loops in response to DSBs and promotes their resolution, thereby facilitating HR to promote genome integrity. Our findings thus define a role for HELZ in promoting the resolution of R loops critical for DSB repair by HR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10760136PMC
http://dx.doi.org/10.1101/2023.12.14.571747DOI Listing

Publication Analysis

Top Keywords

dsb repair
16
promotes loop
8
loop resolution
8
resolution facilitate
8
dna double-strand
8
double-strand break
8
repair homologous
8
homologous recombination
8
resolution loops
8
loops critical
8

Similar Publications

Moss BRCA2 lacking the canonical DNA-binding domain promotes homologous recombination and binds to DNA.

Nucleic Acids Res

September 2025

Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France.

BRCA2 is crucial for mediating homology-directed DNA repair (HDR) through its binding to single-stranded DNA (ssDNA) and the recombinases RAD51 and DMC1. Most BRCA2 orthologs have a canonical DNA-binding domain (DBD) with the exception of Drosophila melanogaster. It remains unclear whether such a noncanonical BRCA2 variant without DBD possesses a DNA-binding activity.

View Article and Find Full Text PDF

Contributions of DNA double strand break repair pathways to DNA crosslink repair.

DNA Repair (Amst)

August 2025

Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Med

DNA crosslink-inducing drugs are widely used in clinical settings for treatment of solid tumors. Double strand breaks (DSBs) that arise during interstrand crosslink (ICL) repair are crucial determinants of the therapeutic response, as they lead to cell death if not repaired. DSBs can be repaired through non-homologous end joining (NHEJ), theta-mediated end joining (TMEJ), and homologous recombination (HR).

View Article and Find Full Text PDF

When susceptible bacterial cultures are treated with antibiotics, some cells can survive treatment without heritable resistance, giving rise to susceptible daughter cells in a phenomenon termed antibiotic persistence. Current models of fluoroquinolone (FQ) persistence in stationary-phase cultures posit that post-treatment resuscitation is dependent on double-stranded break (DSB) repair through RecA-mediated homology-directed repair. Previously, we found that stationary-phase does not depend on RecA to persist.

View Article and Find Full Text PDF

BRCA1 is a crucial component of homologous recombination (HR), a high-fidelity pathway for repairing double-stranded DNA breaks (DSBs) in human cells. The central region of the BRCA1 protein contains two putative DNA binding domains (DBDs), yet their relative substrate specificities and functional contributions to HR remain unclear. Here, we characterized the DNA binding properties of DBD1 (amino acids 330-554), DBD2 (amino acids 894-1057), and BRCA1 C-terminal (BRCT) repeats using biolayer interferometry.

View Article and Find Full Text PDF

Small cell lung cancer (SCLC) is an aggressive malignancy, with most patients presenting with prognostically poor extensive-stage disease. Limited progress in standard care stresses the urgent need for novel therapies. Radiotherapy offers some survival benefit for selected SCLC patients but could be enhanced with radiosensitizers.

View Article and Find Full Text PDF