Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Machine translation produces marginal accuracy rates for low-resource languages, but its deep learning model expects to yield improved accuracy with time. This longitudinal study investigates how Google Translate's Urdu-to-English translated output has evolved between 2018 and 2021. Accuracy and acceptability of the translations have been determined by, a) an interlinear gloss that identifies core semantic units and grammatical functions to be translated and, b) a descriptive comparison of the translated text's syntactic and semantic properties with those of the source text. Overall, despite a 50 % error rate that persists over the three-year interval, the research reports significant improvement in the overall intelligibility of the translations, in contrast to initial results from 2018, which exhibited rampant non-localized errors. Working backwards from instances of errors to morphosyntactic and semantic patterns underlying them, the study concludes that the pro-drop feature of Urdu, Urdu's case-marking system, identification of clause boundaries, polysemous terms, and orthographically similar words pose the greatest difficulty in neural machine translation. These results point to the need for incorporating syntactic information in training data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10754703PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e22883DOI Listing

Publication Analysis

Top Keywords

machine translation
12
syntactic semantic
8
neural machine
8
diachronic study
4
study determining
4
determining syntactic
4
semantic
4
semantic features
4
features urdu-english
4
urdu-english neural
4

Similar Publications

Background: Acute viral respiratory infections (AVRIs) rank among the most common causes of hospitalisation worldwide, imposing significant healthcare burdens and driving the development of pharmacological treatments. However, inconsistent outcome reporting across clinical trials limits evidence synthesis and its translation into clinical practice. A core outcome set (COS) for pharmacological treatments in hospitalised adults with AVRIs is essential to standardise trial outcomes and improve research comparability.

View Article and Find Full Text PDF

Machine learning-based analysis of the impact of 5' untranslated region on protein expression.

Nucleic Acids Res

September 2025

School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, No. 100 Waihuanxi Road, Guangzhou 510006, China.

The 5' untranslated region (5'UTR) plays a crucial regulatory role in messenger RNA (mRNA), with modified 5'UTRs extensively utilized in vaccine production, gene therapy, etc. Nevertheless, manually optimizing 5'UTRs may encounter difficulties in balancing the effects of various cis-elements. Consequently, multiple 5'UTR libraries have been created, and machine learning models have been employed to analyze and predict translation efficiency (TE) and protein expression, providing insights into critical regulatory features.

View Article and Find Full Text PDF

Purpose: Lymphocytes play critical roles in cancer immunity and tumor surveillance. Radiation-induced lymphopenia (RIL) is a common side effect observed in patients with cancer undergoing chemoradiation therapy (CRT), leading to impaired immunity and worse clinical outcomes. Although proton beam therapy (PBT) has been suggested to reduce RIL risk compared with intensity-modulated radiation therapy (IMRT), this study used Bayesian counterfactual machine learning to identify distinct patient profiles and inform personalized radiation modality choice.

View Article and Find Full Text PDF

Rationale And Objectives: This study systematically evaluates the diagnostic performance of artificial intelligence (AI)-driven and conventional radiomics models in detecting muscle-invasive bladder cancer (MIBC) through meta-analytical approaches. Furthermore, it investigates their potential synergistic value with the Vesical Imaging-Reporting and Data System (VI-RADS) and assesses clinical translation prospects.

Methods: This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.

View Article and Find Full Text PDF